Generalised Measures of Multivariate Information Content

Conor Finn

March 2020

Fundamentals of information theory

- The information content of an event

$$
h(x)=\log \frac{1}{p(x)}
$$

Fundamentals of information theory

- The information content of an event

$$
h(x)=\log \frac{1}{p(x)}
$$

- the less likely the event, the most surprising it is $\Longrightarrow 1 / p(x)$
- if two events are independent, then we should have

$$
h(x, y)=h(x)+h(y) \Longleftrightarrow p(x, y)=p(x) \cdot p(y) \Longrightarrow \log
$$

- Duality between information and surprise

Fundamentals of information theory

- The information content of an event

$$
h(x)=\log \frac{1}{p(x)}
$$

- the less likely the event, the most surprising it is $\Longrightarrow 1 / p(x)$
- if two events are independent, then we should have

$$
h(x, y)=h(x)+h(y) \Longleftrightarrow p(x, y)=p(x) \cdot p(y) \Longrightarrow \log
$$

- Duality between information and surprise
- The entropy is the average information content of a variable

$$
H(X)=\mathrm{E}_{X}[h(x)]=\sum_{x \in \mathcal{X}}-p(x) \log p(x)
$$

- Duality between average information and average surprise (uncertainty)

Conditional entropy and mutual information

- The entropy satisfies

$$
H(X)+H(Y) \geq H(X, Y) \geq H(X), H(Y) \geq 0
$$

- Conditional entropy

$$
\begin{aligned}
& H(X \mid Y)=H(X, Y)-H(Y) \geq 0 \\
& H(Y \mid X)=H(X, Y)-H(X) \geq 0
\end{aligned}
$$

- Mutual information

$$
I(X ; Y)=H(X)+H(Y)-H(X, Y) \geq 0
$$

Conditional entropy and mutual information

- The entropy satisfies

$$
H(X)+H(Y) \geq H(X, Y) \geq H(X), H(Y) \geq 0
$$

- Conditional entropy

$$
\begin{aligned}
H(X \mid Y) & =H(X, Y)-H(Y) \geq 0 \\
H(Y \mid X) & =H(X, Y)-H(X) \geq 0
\end{aligned}
$$

- Mutual information

$$
I(X ; Y)=H(X)+H(Y)-H(X, Y) \geq 0
$$

Analogy between entropy and measure

$$
\begin{gathered}
H(X)+H(Y) \geq H(X, Y) \geq H(X), H(Y) \geq 0 \\
H(X \mid Y)=H(X, Y)-H(Y) \geq 0 \\
H(Y \mid X)=H(X, Y)-H(X) \geq 0 \\
I(X ; Y)=H(X)+H(Y)-H(X, Y) \geq 0
\end{gathered}
$$

Analogy between entropy and measure

$$
\begin{array}{cc}
H(X)+H(Y) \geq H(X, Y) \geq H(X), H(Y) \geq 0 & \mu(A)+\mu(B) \geq \mu(A \cup B) \geq \mu(A), \mu(B) \geq 0 \\
H(X \mid Y)=H(X, Y)-H(Y) \geq 0 & \mu(A \backslash B)=\mu(A \cup B)-\mu(B) \geq 0 \\
H(Y \mid X)=H(X, Y)-H(X) \geq 0 & \mu(B \backslash A)=\mu(A \cup B)-\mu(A) \geq 0 \\
I(X ; Y)=H(X)+H(Y)-H(X, Y) \geq 0 & \mu(A \cap B)=\mu(A)+\mu(B)-\mu(A \cup B) \geq 0
\end{array}
$$

Analogy breaks down for three or more variables

- Multivariate mutual information (MMI)

$$
\begin{aligned}
& I(X ; Y ; Z)=H(X)+H(Y)+H(Z) \\
& \quad-H(X, Y)-H(X, Z)-H(Y, Z) \\
& \quad+H(Z, Y, Z)
\end{aligned}
$$

- MMI is not non-negative
- MMI has "no intuitive meaning"

Can we introduce information-theoretic measures that are analogous to measure for more than three variables?

Pointwise mutual information (PMI)

- The information content satisfies

$$
h(x, y) \geq h(x), h(y) \geq 0
$$

- Conditional information content

$$
\begin{aligned}
& h(x \mid y)=h(x, y)-h(y) \geq 0 \\
& h(y \mid x)=h(x, y)-h(x) \geq 0
\end{aligned}
$$

- However, we do not have the following

$$
h(x)+h(y) \geq h(x, y) \geq 0
$$

- Pointwise mutual information can be negative

$$
i(x ; y)=h(x)+h(y)-h(x, y)
$$

Pointwise mutual information (PMI)

- The information content satisfies

$$
h(x, y) \geq h(x), h(y) \geq 0
$$

- Conditional information content

$$
\begin{aligned}
& h(x \mid y)=h(x, y)-h(y) \geq 0 \\
& h(y \mid x)=h(x, y)-h(x) \geq 0
\end{aligned}
$$

- However, we do not have the following

$$
h(x)+h(y) \geq h(x, y) \geq 0
$$

- Pointwise mutual information can be negative

$$
i(x ; y)=h(x)+h(y)-h(x, y)
$$

Why can the pointwise mutual information be negative?

Why can the pointwise mutual information be negative?

	Johnny	Alice	Bob	Indy
Observations:	(X, Y)	X	Y	-
Knows:	$P(X, Y)$	$P(X)$	$P(Y)$	$P(X) \& P(Y)$

Why can the pointwise mutual information be negative?

	Johnny	Alice	Bob	Indy
Observations:	(X, Y)	X	Y	-
Knows:	$P(X, Y)$	$P(X)$	$P(Y)$	$P(X) \& P(Y)$
Realisation:	(x, y)	x	y	(x, y)

Why can the pointwise mutual information be negative?

	Johnny	Alice	Indy	
Observations:	(X, Y)	X	Y	-
Knows:	$P(X, Y)$	$P(X)$	$P(Y)$	$P(X) \& P(Y)$
Realisation:	(x, y)	x	y	(x, y)
Information:	$h(x, y)$	$h(x)$	$h(y)$	$h(x)+h(y)$

Why can the pointwise mutual information be negative?

| | Johnny | Indy | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Observations: | (X, Y) | $P(X)$ | $P(Y)$ | |
| Knows: | $P(X, Y)$ | x | | |

Why can the pointwise mutual information be negative?

Venn diagram for information content

- Johnny has at least as much information as Alice and Bob

$$
\begin{gathered}
h(x, y) \geq h(x), h(y) \geq 0 \\
h(x \mid y)=h(x, y)-h(y) \geq 0 \\
h(y \mid x)=h(x, y)-h(x) \geq 0
\end{gathered}
$$

Venn diagram for information content

- Johnny has at least as much information as Alice and Bob

$$
\begin{gathered}
h(x, y) \geq h(x), h(y) \geq 0 \\
h(x \mid y)=h(x, y)-h(y) \geq 0 \\
h(y \mid x)=h(x, y)-h(x) \geq 0
\end{gathered}
$$

- The PMI can be negative because Indy can have more or less information than Johnny

$$
i(x ; y)=h(x)+h(y)-h(x, y)
$$

- Sometimes Indy thinks he has more information than Johnny despite knowing less

Venn diagram for information content

- Johnny has at least as much information as Alice and Bob

$$
\begin{gathered}
h(x, y) \geq h(x), h(y) \geq 0 \\
h(x \mid y)=h(x, y)-h(y) \geq 0 \\
h(y \mid x)=h(x, y)-h(x) \geq 0
\end{gathered}
$$

- The PMI can be negative because Indy can have more or less information than Johnny

$$
i(x ; y)=h(x)+h(y)-h(x, y)
$$

- Sometimes Indy thinks he has more information than Johnny despite knowing less
- This happens because Indy assumes the marginal events are independent
- Sometimes Indy thinks he has more information than Johnny despite knowing less
- This happens because Indy assumes the marginal events are independent
- Sometimes Indy thinks he has more information than Johnny despite knowing less
- This happens because Indy assumes the marginal events are independent

Can we introduce a new information measure that is no less than Alice's and Bob's information, but is no greater than Johnny's information?

- Sometimes Indy thinks he has more information than Johnny despite knowing less
- This happens because Indy assumes the marginal events are independent

Can we introduce a new information measure that is no less than Alice's and Bob's information, but is no greater than Johnny's information?

- This would quantify the information associated with marginal information sharing

Marginal information sharing

	Johnny	Alice	Eve	
Observations:	(X, Y)	$P(X)$	$P(X) \& P(Y)$	
Knows:	$P(X, Y)$	x	y	(x, y)
Realisation:	(x, y)			

- Eve should have at least as much information as Alice and Bob, but no more than Johnny

Marginal information sharing

- Eve should have at least as much information as Alice and Bob, but no more than Johnny
- It is not difficult prove that Eve's information is given by max $(h(x), h(y))$

Marginal information sharing

- Eve should have at least as much information as Alice and Bob, but no more than Johnny
- It is not difficult prove that Eve's information is given by max $(h(x), h(y))$
- Eve's information will also be called the union information $h(x \sqcup y)=\max (h(x), h(y))$

Union and intersection information content

- Union information content

$$
h(x \sqcup y)=\max (h(x), h(y))
$$

satisfies

$$
h(x)+h(y) \geq h(x \sqcup y) \geq h(x), h(y) \geq 0
$$

Union and intersection information content

- Union information content

$$
h(x \sqcup y)=\max (h(x), h(y))
$$

satisfies

$$
h(x)+h(y) \geq h(x \sqcup y) \geq h(x), h(y) \geq 0
$$

Union and intersection information content

- Union information content

$$
h(x \sqcup y)=\max (h(x), h(y))
$$

satisfies

$$
h(x)+h(y) \geq h(x \sqcup y) \geq h(x), h(y) \geq 0
$$

- Unique information content

$$
\begin{aligned}
h(x \backslash y) & =h(x \sqcup y)-h(y) \\
& =\max (h(x)-h(y), 0) \geq 0 \\
h(y \backslash x) & =h(x \sqcup y)-h(x) \\
& =\max (0, h(y)-h(x)) \geq 0
\end{aligned}
$$

Union and intersection information content

- Union information content

$$
h(x \sqcup y)=\max (h(x), h(y))
$$

satisfies

$$
h(x)+h(y) \geq h(x \sqcup y) \geq h(x), h(y) \geq 0
$$

- Unique information content

$$
\begin{aligned}
h(x \backslash y) & =h(x \sqcup y)-h(y) \\
& =\max (h(x)-h(y), 0) \geq 0 \\
h(y \backslash x) & =h(x \sqcup y)-h(x) \\
& =\max (0, h(y)-h(x)) \geq 0
\end{aligned}
$$

- Intersection information content

$$
\begin{aligned}
h(x \sqcap y) & =h(x)+h(y)-h(x \sqcup y) \\
& =\min (h(x), h(y)) \geq 0 .
\end{aligned}
$$

Union and intersection information content

- Union information content

$$
h(x \sqcup y)=\max (h(x), h(y))
$$

satisfies

$$
h(x)+h(y) \geq h(x \sqcup y) \geq h(x), h(y) \geq 0
$$

- Unique information content

$$
\begin{aligned}
h(x \backslash y) & =h(x \sqcup y)-h(y) \\
& =\max (h(x)-h(y), 0) \geq 0 \\
h(y \backslash x) & =h(x \sqcup y)-h(x) \\
& =\max (0, h(y)-h(x)) \geq 0
\end{aligned}
$$

- Intersection information content

$$
\begin{aligned}
h(x \sqcap y) & =h(x)+h(y)-h(x \sqcup y) \\
& =\min (h(x), h(y)) \geq 0 .
\end{aligned}
$$

- Decomposition

$$
h(x \sqcup y)=h(x \sqcap y)+h(x \backslash y)+h(y \backslash x)
$$

Union and intersection entropy

- Union entropy

$$
H(X \sqcup Y)=\mathrm{E}_{X Y}[h(x \sqcup y)]
$$

satisfies
$H(X)+H(Y) \geq H(X \sqcup Y) \geq H(X), H(Y) \geq 0$

Union and intersection entropy

- Union entropy

$$
H(X \sqcup Y)=\mathrm{E}_{X Y}[h(x \sqcup y)]
$$

satisfies
$H(X)+H(Y) \geq H(X \sqcup Y) \geq H(X), H(Y) \geq 0$

- Intersection information content

$$
\begin{aligned}
H(X \sqcap Y) & =H(X)+H(Y)-H(X \sqcup Y) \\
& =\mathrm{E}_{X Y}[h(x \sqcap y)]
\end{aligned}
$$

Union and intersection entropy

- Union entropy

$$
H(X \sqcup Y)=\mathrm{E}_{X Y}[h(x \sqcup y)]
$$

satisfies
$H(X)+H(Y) \geq H(X \sqcup Y) \geq H(X), H(Y) \geq 0$

- Unique information content

$$
\begin{aligned}
H(X \backslash Y) & =\mathrm{E}_{X Y}[h(x \backslash y)] \\
H(Y \backslash X) & =\mathrm{E}_{X Y}[h(y \backslash x)]
\end{aligned}
$$

- Intersection information content

$$
\begin{aligned}
H(X \sqcap Y) & =H(X)+H(Y)-H(X \sqcup Y) \\
& =\mathrm{E}_{X Y}[h(x \sqcap y)]
\end{aligned}
$$

Union and intersection entropy

- Union entropy

$$
H(X \sqcup Y)=\mathrm{E}_{X Y}[h(x \sqcup y)]
$$

satisfies
$H(X)+H(Y) \geq H(X \sqcup Y) \geq H(X), H(Y) \geq 0$

- Unique information content
- Intersection information content

$$
\begin{aligned}
H(X \backslash Y) & =\mathrm{E}_{X Y}[h(x \backslash y)] \\
H(Y \backslash X) & =\mathrm{E}_{X Y}[h(y \backslash x)]
\end{aligned}
$$

$$
\begin{aligned}
H(X \sqcap Y) & =H(X)+H(Y)-H(X \sqcup Y) \\
& =\mathrm{E}_{X Y}[h(x \sqcap y)]
\end{aligned}
$$

- Decomposition

$$
H(X \sqcup Y)=H(X \sqcap Y)+H(X \backslash Y)+H(Y \backslash X)
$$

Union and intersection entropy

- Union entropy

$$
H(X \sqcup Y)=\mathrm{E}_{X Y}[h(x \sqcup y)]
$$

satisfies

$$
H(X)+H(Y) \geq H(X \sqcup Y) \geq H(X), H(Y) \geq 0
$$

- Unique information content
- Intersection information content

$$
\begin{aligned}
H(X \backslash Y) & =\mathrm{E}_{X Y}[h(x \backslash y)] \\
H(Y \backslash X) & =\mathrm{E}_{X Y}[h(y \backslash x)]
\end{aligned}
$$

- Intersection information content

$$
\begin{aligned}
H(X \sqcap Y) & =H(X)+H(Y)-H(X \sqcup Y) \\
& =\mathrm{E}_{X Y}[h(x \sqcap y)]
\end{aligned}
$$

- Decomposition

$$
H(X \sqcup Y)=H(X \sqcap Y)+H(X \backslash Y)+H(Y \backslash X)
$$

Analogy between shared marginal information and measure

$$
H(X)+H(Y) \geq H(X \sqcup Y) \geq H(X), H(Y) \geq 0
$$

$$
H(X \backslash Y)=H(X \sqcup Y)-H(Y) \geq 0
$$

$$
H(Y \backslash X)=H(X \sqcup Y)-H(X) \geq 0
$$

$$
H(X \sqcap Y)=H(X)+H(Y)-H(X \sqcup Y) \geq 0
$$

Analogy between shared marginal information and measure

$$
\begin{array}{cc}
H(X)+H(Y) \geq H(X \sqcup Y) \geq H(X), H(Y) \geq 0 & \mu(A)+\mu(B) \geq \mu(A \cup B) \geq \mu(A), \mu(B) \geq 0 \\
H(X \backslash Y)=H(X \sqcup Y)-H(Y) \geq 0 & \mu(A \backslash B)=\mu(A \cup B)-\mu(B) \geq 0 \\
H(Y \backslash X)=H(X \sqcup Y)-H(X) \geq 0 & \mu(B \backslash A)=\mu(A \cup B)-\mu(A) \geq 0 \\
H(X \sqcap Y)=H(X)+H(Y)-H(X \sqcup Y) \geq 0 & \mu(A \cap B)=\mu(A)+\mu(B)-\mu(A \cup B) \geq 0
\end{array}
$$

Does this analogy hold for more than two variables?

Does this analogy hold for more than two variables?

- How do these new measures generalise?
- What happens when we share the marginal information through intermediaries?

Does this analogy hold for more than two variables?

- How do these new measures generalise?
- What happens when we share the marginal information through intermediaries?
- Consider the following:
- Suppose that Alice and Bob share their information with Dan
- The information Dan could have gotten from either is $h(x \sqcap y)$
- Now say that Charlie and Dan share their information with Eve
- Eve's information is now given by $h((x \sqcap y) \sqcup z)$

Does this analogy hold for more than two variables?

- How do these new measures generalise?
- What happens when we share the marginal information through intermediaries?
- Consider the following:
- Suppose that Alice and Bob share their information with Dan
- The information Dan could have gotten from either is $h(x \sqcap y)$
- Now say that Charlie and Dan share their information with Eve
- Eve's information is now given by $h((x \sqcap y) \sqcup z)$
- How many unique combinations or ways to share marginal information are there?

Algebraic structure

- Idempotent

$$
\begin{aligned}
& h(x \sqcup x)=h(x) \\
& h(x \sqcap x)=h(x)
\end{aligned}
$$

Algebraic structure

- Idempotent

$$
\begin{aligned}
& h(x \sqcup x)=h(x) \\
& h(x \sqcap x)=h(x)
\end{aligned}
$$

- Commutative

$$
\begin{aligned}
& h(x \sqcup y)=h(y \sqcup x) \\
& h(x \sqcap y)=h(y \sqcap x)
\end{aligned}
$$

Algebraic structure

- Idempotent

$$
\begin{aligned}
& h(x \sqcup x)=h(x) \\
& h(x \sqcap x)=h(x)
\end{aligned}
$$

- Commutative

$$
\begin{aligned}
& h(x \sqcup y)=h(y \sqcup x) \\
& h(x \sqcap y)=h(y \sqcap x)
\end{aligned}
$$

- Associative

$$
\begin{aligned}
& h(x \sqcup y \sqcup z)=h((x \sqcup y) \sqcup z)=h(x \sqcup(y \sqcup z)) \\
& h(x \sqcap y \sqcap z)=h((x \sqcap y) \sqcap z)=h(x \sqcap(y \sqcap z))
\end{aligned}
$$

Algebraic structure

- Idempotent

$$
\begin{aligned}
& h(x \sqcup x)=h(x) \\
& h(x \sqcap x)=h(x)
\end{aligned}
$$

- Absorption

$$
\begin{aligned}
& h(x \sqcup(x \sqcap y))=h(x) \\
& h(x \sqcap(x \sqcup y))=h(x)
\end{aligned}
$$

- Commutative

$$
\begin{aligned}
& h(x \sqcup y)=h(y \sqcup x) \\
& h(x \sqcap y)=h(y \sqcap x)
\end{aligned}
$$

- Associative

$$
\begin{aligned}
& h(x \sqcup y \sqcup z)=h((x \sqcup y) \sqcup z)=h(x \sqcup(y \sqcup z)) \\
& h(x \sqcap y \sqcap z)=h((x \sqcap y) \sqcap z)=h(x \sqcap(y \sqcap z))
\end{aligned}
$$

Algebraic structure

- Idempotent

$$
\begin{aligned}
& h(x \sqcup x)=h(x) \\
& h(x \sqcap x)=h(x)
\end{aligned}
$$

- Absorption

$$
\begin{aligned}
& h(x \sqcup(x \sqcap y))=h(x) \\
& h(x \sqcap(x \sqcup y))=h(x)
\end{aligned}
$$

- Commutative

$$
\begin{aligned}
& h(x \sqcup y)=h(y \sqcup x) \\
& h(x \sqcap y)=h(y \sqcap x)
\end{aligned}
$$

- Distributive

$$
\begin{aligned}
& h(x \sqcup(y \sqcap z))=h((x \sqcup y) \sqcap(x \sqcup z)) \\
& h(x \sqcap(y \sqcup z))=h((x \sqcap y) \sqcup(x \sqcap z))
\end{aligned}
$$

- Associative

$$
\begin{aligned}
& h(x \sqcup y \sqcup z)=h((x \sqcup y) \sqcup z)=h(x \sqcup(y \sqcup z)) \\
& h(x \sqcap y \sqcap z)=h((x \sqcap y) \sqcap z)=h(x \sqcap(y \sqcap z))
\end{aligned}
$$

Algebraic structure

- Idempotent

$$
\begin{aligned}
& h(x \sqcup x)=h(x) \\
& h(x \sqcap x)=h(x)
\end{aligned}
$$

- Absorption

$$
\begin{aligned}
& h(x \sqcup(x \sqcap y))=h(x) \\
& h(x \sqcap(x \sqcup y))=h(x)
\end{aligned}
$$

- Commutative

$$
\begin{aligned}
& h(x \sqcup y)=h(y \sqcup x) \\
& h(x \sqcap y)=h(y \sqcap x)
\end{aligned}
$$

- Distributive

$$
\begin{aligned}
& h(x \sqcup(y \sqcap z))=h((x \sqcup y) \sqcap(x \sqcup z)) \\
& h(x \sqcap(y \sqcup z))=h((x \sqcap y) \sqcup(x \sqcap z))
\end{aligned}
$$

- Associative

$$
\begin{aligned}
& h(x \sqcup y \sqcup z)=h((x \sqcup y) \sqcup z)=h(x \sqcup(y \sqcup z)) \\
& h(x \sqcap y \sqcap z)=h((x \sqcap y) \sqcap z)=h(x \sqcap(y \sqcap z))
\end{aligned}
$$

- These 5 properties yield a distributive lattice

$$
\begin{aligned}
a & =h((x \sqcup y) \sqcap(x \sqcup z) \sqcap(y \sqcup z)) \\
& =h((x \sqcup(y \sqcap z)) \sqcap(y \sqcup(x \sqcap z))) \\
& =h((x \sqcup(y \sqcap z)) \sqcap(z \sqcup(x \sqcap y))) \\
& =h((y \sqcup(x \sqcap z)) \sqcap(z \sqcup(x \sqcap y))) \\
& =h((y \sqcap(x \sqcup z)) \sqcup(z \sqcap(x \sqcup y))) \\
& =h((x \sqcap(y \sqcup z)) \sqcup(z \sqcap(x \sqcup y))) \\
& =h((x \sqcap(y \sqcup z)) \sqcup(y \sqcap(x \sqcup z))) \\
& =h((x \sqcap y) \sqcup(x \sqcap z) \sqcup(y \sqcap z)) \\
b & =h(y \sqcup(x \sqcap z))=h((x \sqcup y) \sqcap(y \sqcup z)) \\
c & =h(y \sqcap(x \sqcup z))=h((x \sqcap y) \sqcup(y \sqcap z))
\end{aligned}
$$

Birkhoff's representation theorem

- Equivalence relation between shared marginal information and sets

Birkhoff's representation theorem

- Equivalence relation between shared marginal information and sets

Can we introduce information-theoretic measures that are analogous to measure for more than three variables?

Yes

Union and intersection entropy are a new, fundamental contribution to information theory.

Union and intersection entropy are a new, fundamental contribution to information theory.

These measures can be utilised in information decomposition

Information decomposition

Consider trying to predict T from S_{1} and S_{2}

- Several types of information

Information decomposition

Consider trying to predict T from S_{1} and S_{2}

- Several types of information
- Unique information $U\left(S_{1} \backslash S_{2} \rightarrow T\right)$

UNQ			
\boldsymbol{p}	\boldsymbol{s}_{1}	\boldsymbol{s}_{2}	\boldsymbol{t}
$1 / 4$	0	0	0
$1 / 4$	0	1	0
$1 / 4$	1	0	1
$1 / 4$	1	1	1

Information decomposition

Consider trying to predict T from S_{1} and S_{2}

- Several types of information
- Unique information $U\left(S_{1} \backslash S_{2} \rightarrow T\right)$
- Redundant information $R\left(S_{1}, S_{2} \rightarrow T\right)$

UnQ			RDN			
p	$s_{1} s_{2}$	t				
1/4	0	0	p	s_{1}	s_{2}	t
1/4	01	0	1/2	0	0	0
1/4	10	1	1/2		1	1
1/4	11	1				

Information decomposition

Consider trying to predict T from S_{1} and S_{2}

- Several types of information
- Unique information $U\left(S_{1} \backslash S_{2} \rightarrow T\right)$
- Redundant information $R\left(S_{1}, S_{2} \rightarrow T\right)$

- Synergistic information $C\left(S_{1}, S_{2} \rightarrow T\right)$

Information decomposition

Consider trying to predict T from S_{1} and S_{2}

- Several types of information
- Unique information $U\left(S_{1} \backslash S_{2} \rightarrow T\right)$
- Redundant information $R\left(S_{1}, S_{2} \rightarrow T\right)$

	UnQ			Rdn				Xor				
p	s_{1}	s_{2}	t					p	s_{1}	s_{2}	t	
1/4	0	0	0	\boldsymbol{p}	s_{1}	s_{2}	t	1/4	0	0	0	
1/4	0	1	0	1/2	0	0	0	1/4	0	1	1	
1/4	1	0	1	1/2	1	1	1	1/4	1	0	1	
1/4	1	1	1					1/4	1	1	0	

- Synergistic information $C\left(S_{1}, S_{2} \rightarrow T\right)$
- Mutual information captures

$$
\begin{aligned}
& I\left(T ; S_{1}\right)=R\left(T: S_{1}, S_{2}\right)+U\left(T: S_{1} \backslash S_{2}\right) \\
& I\left(T ; S_{2}\right)=R\left(T: S_{1}, S_{2}\right)+U\left(T: S_{2} \backslash S_{1}\right)
\end{aligned}
$$

Information decomposition

Consider trying to predict T from S_{1} and S_{2}

- Several types of information
- Unique information $U\left(S_{1} \backslash S_{2} \rightarrow T\right)$
- Redundant information $R\left(S_{1}, S_{2} \rightarrow T\right)$

UNQ				RDN				XOR			
p	s_{1}	s_{2}	t					p	\boldsymbol{s}_{1}	s_{2}	t
1/4	0	0	0	p	s_{1}	s_{2}	t	1/4	0	0	0
1/4	0	1	0	$1 / 2$	0	0	0	$1 / 4$	0	1	1
$1 / 4$	1	0	1	$1 / 2$	1	1	1	$1 / 4$	1	0	1
1/4	1	1	1					1/4	1	1	0

- Synergistic information $C\left(S_{1}, S_{2} \rightarrow T\right)$
- Mutual information captures

$$
\begin{aligned}
& I\left(T ; S_{1}\right)=R\left(T: S_{1}, S_{2}\right)+U\left(T: S_{1} \backslash S_{2}\right) \\
& I\left(T ; S_{2}\right)=R\left(T: S_{1}, S_{2}\right)+U\left(T: S_{2} \backslash S_{1}\right)
\end{aligned}
$$

- Joint mutual information captures

$$
I\left(T ; S_{1} S_{2}\right)=R\left(S_{1}, S_{2} \rightarrow T\right)+U\left(S_{1} S_{2} \rightarrow T\right)+U\left(S_{2} S_{1} \rightarrow T\right)+C\left(S_{1}, S_{2} \rightarrow T\right)
$$

Partial information decomposition

- Axioms for redundant information

1. Commutativity
2. Monotonically decreasing
3. Self-redundancy (idempotency)

- Yields a redundancy lattice

Partial information decomposition

- Axioms for redundant information

1. Commutativity
2. Monotonically decreasing
3. Self-redundancy (idempotency)

- Yields a redundancy lattice

Partial information decomposition

- Axioms for redundant information

1. Commutativity
2. Monotonically decreasing
3. Self-redundancy (idempotency)

- Yields a redundancy lattice

PID is elegant, however...

- Unique evaluation requires a definition of redundant information
- providing this definition has been a contentious area of research
- Most appoaches do not work for two or more sources (not very useful)
- Information dynamics requires a pointwise information decomposition

Use the intersection information content is a measure of redundancy

We can also interpret the synergistic information in this framework

Synergistic information content

- Eve has no more information than Johnny

$$
h(x, y) \geq h(x \sqcup y)
$$

Synergistic information content

- Eve has no more information than Johnny

$$
h(x, y) \geq h(x \sqcup y)
$$

- Synergistic information content

$$
\begin{aligned}
h(x \oplus y) & =h(x, y)-h(x \sqcup y) \\
& =\min (h(y \mid x), h(x \mid y)) \geq 0
\end{aligned}
$$

Synergistic information content

- Eve has no more information than Johnny

$$
h(x, y) \geq h(x \sqcup y)
$$

- Synergistic information content

$$
\begin{aligned}
h(x \oplus y) & =h(x, y)-h(x \sqcup y) \\
& =\min (h(y \mid x), h(x \mid y)) \geq 0
\end{aligned}
$$

- Mutual information content

$$
i(x ; y)=h(x \sqcup y)-h(x \oplus y)
$$

Synergistic information content

- Eve has no more information than Johnny

$$
h(x, y) \geq h(x \sqcup y)
$$

- Synergistic information content

$$
\begin{aligned}
h(x \oplus y) & =h(x, y)-h(x \sqcup y) \\
& =\min (h(y \mid x), h(x \mid y)) \geq 0
\end{aligned}
$$

- Mutual information content

$$
i(x ; y)=h(x \sqcup y)-h(x \oplus y)
$$

- Decomposition

$$
h(x, y)=h(x \backslash y)+h(y \backslash x)+h(x \sqcap y)+h(x \oplus y)
$$

Synergistic entropy

- Synergistic entropy

$$
\begin{aligned}
H(X \oplus Y) & =H(X, Y)-H(X \sqcup Y) \\
& \left.=\mathrm{E}_{X Y}[h(x \oplus y))\right] \geq 0
\end{aligned}
$$

- Mutual information

$$
I(X ; Y)=H(X \sqcup Y)-H(X \oplus Y)
$$

- Decomposition

$$
H(X, Y)=H(X \backslash Y)+H(Y \backslash X)+H(X \sqcap Y)+H(X \oplus Y)
$$

We can also generalise the synergistic entropy to any number of variables

We can also generalise the synergistic entropy to any number of variables

- This is non-trivial
- It requires you to combine the algebraic structure of joint information with that of shared marginal information

We can also generalise the synergistic entropy to any number of variables

- This is non-trivial
- It requires you to combine the algebraic structure of joint information with that of shared marginal information
- It turns out the redundancy lattice is an substructure within the larger algebraic structure

Redundancy lattice

$$
\begin{aligned}
a & =h((x, y) \sqcap(x, z) \sqcap(y, z)) \\
b & =h((x, y) \sqcap(y, z)) \\
c & =h(y \sqcap(x, z))
\end{aligned}
$$

$$
\begin{array}{ll}
b=H((X \oplus Y) \sqcap(X \oplus Z) \backslash(Y, Z)) & e=H((X \oplus Y) \backslash(X, Z) \sqcup(Y, Z)) \\
c=H((X \oplus Y) \sqcap(Y \oplus Z) \backslash(X, Z)) & f=H((X \oplus Z) \backslash(X, Y) \sqcup(Y, Z)) \\
d=H((X \oplus Z) \sqcap(Y \oplus Z) \backslash(X, Y)) & g=H((Y \oplus Z) \backslash(X, Y) \sqcup(X, Z))
\end{array}
$$

Conclusions

- The union and intersection entropy are new, fundamental contributions to information theory
- The are readily interpretable in terms of sets through an equivalence relation
- The redundancy lattice from partial information decomposition arises naturally within this framework

Thank you for listening

- Links to paper and copy of slides available at https://finnconor.github.io/
- C. Finn and J. T. Lizier. Generalised measures of multivariate information content. Entropy, 22(2):216, 2020.
- C. Finn and J. T. Lizier. Quantifying information modification in cellular automata using pointwise partial information decomposition. In Artificial Life Conference Proceedings, page 386. MIT Press, 2018.
- M. Wibral, C. Finn, P. Wollstadt, J. T. Lizier, and V. Priesemann. Quantifying information modification in developing neural networks via partial information decomposition. Entropy, 19(9):494, 2017.

