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Pointwise Information Theory

I (Shannon) entropy: expected information in a realisation of a random variable

H(X) =
∑
x

p(x) log 1
p(x) ≥ 0

I Mutual information (MI) quantifies the expected information provided by Y about X, or
vice versa

I(X;Y ) =
∑
x, y

p(x, y) log
p(x, y)

p(x)p(y)

I From four postulates, Fano (1961) derived the pointwise mutual information which
quantifies the information provided by event y about the event x, or vice versa

i(x; y) = log
p(x, y)

p(x)p(y)

I Corollaries: (average) mutual information, pointwise entropy and (average) entropy

� Pointwise mutual information can be negative!



Unique, Redundant and Synergistic Information

Consider three random variables S1, S2 and T and suppose we are interested in
predicting the value of T from S1 and S2

I Unique information U(T : S1\S2)
Source S1 may contain information about T
that source S2 does not (or vice versa)

p s1 s2 t

1/4 0 0 0
1/4 0 1 0
1/4 1 0 1
1/4 1 1 1

I Redundant information R(T : S1, S2)
Source S2 may contain the same information
as source S2 about T

p s1 s2 t

0 0 0 1/2
1 1 1 1/2

I Synergistic information C(T : S1, S2)
It is possible that neither source Z nor source
Y contain information about X, yet take
together they do; e.g. XOR

t s1 s2 t

1/4 0 0 0
1/4 0 1 1
1/4 1 0 1
1/4 1 1 0



Information Decomposition

In general, unique, redundant and synergistic information are present simultaneously

I Mutual information captures

I(T ;S1) = R(T : S1, S2) + U(T : S1\S2)

I(T ;S2) = R(T : S1, S2) + U(T : S2\S1)

p s1 s2 t

1/4 0 0 0
1/4 0 1 1
1/4 1 0 1
1/4 1 1 1

I Joint mutual information captures

I(T ;S1S2) = R(T : S1, S2) + U(T : S1\S2) + U(T : S2\S1) + C(T : S1, S2)

I Three equations with four unknowns
– Define one of the unique, redundant, or synergistic information and solve

I We would like to generalise these notions to any number of variables



Partial Information Decomposition

I PID of Williams and Beer (2010) provides an axiomatic framework for extending
information decomposition to arbitrary number of source variables

Axioms (PID)

(1) Symmetry: R(T : S1, . . . , Sn) is invariant under permutations of the Si’s

(2) Self-redundancy: R(T : Si) = I(T ;Si)

(3) Monotonicity: R(T : S1, . . . , Sn) ≤ R(T : S1; . . . ;Sn−1)

I Based upon the idea that redundancy is in some way analogous to set intersection

I Yields a structure for multivariate information called the redundancy lattice

I No well-accepted definition of unique, redundant, or synergistic information which is
compatible with PID in general has emerged



Redundancy lattice
{123}

{23}{13}{12}

{13}{23}{12}{23}{12}{13}

{12}{13}{23}{3}{2}{1}

{3}{12}{2}{13}{1}{23}

{2}{3}{1}{3}{1}{2}

{1}{2}{3}

{12}

{2}{1}

{1}{2}



Pointwise Information Decomposition

I In principle, we should be able to decompose pointwise information for each realisation

i(t; s1) = r(t : s1, s2) + u(t : s1\s2)
i(t; s2) = r(t : s1, s2) + u(t : s2\s1)

i(t; s1s2) = r(t : s1, s2) + u(t : s1\s2) + u(t : s2\s1) + c(t : s1, s2)

I These should average to yield the (average) information decomposition

R(T : S1, S2) =
〈
r(t : s1, s2)

〉
U(T : S1\S2) =

〈
u(t : s1\s2)

〉
C(T : S1, S2) =

〈
c(t : s1, s2)

〉
U(T : S2\S1) =

〈
u(t : s2\s1)

〉
I And we should have the usual PID for the (average) informations

I(T ;S1) = R(T : S1, S2) + U(T : S1\S2)

I(T ;S2) = R(T : S1, S2) + U(T : S2\S1)

I(T ;S1S2) = R(T : S1, S2) + U(T : S1\S2) + U(T : S2\S1) + C(T : S1, S2)
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Example: PWUNQ

I Consider the example called Pointwise Unique (PWUNQ) from Finn et al. (2017b)

p s1 s2 t

i(t; s1) i(t; s2) i(t; s1s2) r u1 u2 c

1/4 0 1 1

0 1 1 0 0 1 0

1/4 1 0 1

1 0 1 0 1 0 0

1/4 0 2 2

0 1 1 0 0 1 0

1/4 2 0 2

1 0 1 0 1 0 0

Expected values

1/2 1/2 1 0 1/2 1/2 0

I According to Williams and Beer (2010), Bertschinger et al. (2014), Griffith and Koch
(2014) and Harder et al. (2013)

R = 〈r〉 = 1/2 bit
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Pointwise Partial Information Decomposition

I Idea: rewrite PID axioms using pointwise MI instead of (average) MI

Axioms (PPID)

(1) Symmetry: r(t : s1, . . . , sn) is invariant under permutations of the si’s

(2) Self-redundancy: r(t : si) = i(t; si)

(3) Monotonicity: r(t : s1, . . . , sn) ≤ r(t : s1; . . . ; sn−1)

� Problem: pointwise mutual information is not non-negative

I How do we deal with this issue?
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Specificity and Ambiguity

I Idea: split the pointwise mutual information into non-negative entropic components

I In Finn et al. (2017a), we proved pointwise information provided by s about t must be
split in the following way

i(s→ t) = i+(s→ t)− i−(s→ t)
where

(Specificity) i+(s→ t) = h(s) i−(s→ t) = h(s|t) (Ambiguity)

Axioms (PPID using Specificity and Ambiguity)

(1) Symmetry: r±(t : s1, . . . , sn) is invariant under permutations of the si’s
(2) Self-redundancy: r±(t : si) = i±(t; si)
(3) Monotonicity: r±(t : s1, . . . , sn) ≤ r±(t : s1; . . . ; sn−1)

I Yields two lattices (per realisation): the specificity and ambiguity lattices
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Redundancy Measure on the Lattices

I Still need a measure of redundant information on each lattice

I We define the redundant specificity and redundant ambiguity to be

r+min(s1, . . . , sk→ t) = min
sj

h(sj) r−min(s1, . . . , sk→ t) = min
sj

h(sj |t)

I There is another axiom (Axiom 4) which helps justify this definition
– Operational justification in terms of Kelly gambling
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Redundancy Measure on the Lattices

I Still need a measure of redundant information on each lattice
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r+min(s1, . . . , sk→ t) = min
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Example: PWUNQ

p s1 s2 t i+1 i−1 i+2 i−2 i+12 i−12 r+ u+
1 u+

2 c+ r− u−
1 u−

2 c−

1/4 0 1 1 1 1 2 1 2 1 1 0 1 0 1 0 0 0
1/4 1 0 1 2 1 1 1 2 1 1 1 0 0 1 0 0 0
1/4 0 2 2 1 1 2 1 2 1 1 0 1 0 1 0 0 0
1/4 2 0 2 2 1 1 1 2 1 1 1 0 0 1 0 0 0

Expected values 3/2 1 3/2 1 2 1 1 1/2 1/2 0 1 0 0 0

I Recombining the average specificities and average ambiguities yields the PID

R(T : S1, S2) = 1− 1 = 0 bit U(T : S1\S2) = 1/2− 0 = 1/2 bit

C(T : S1, S2) = 0− 0 = 0 bit U(T : S2\S1) = 1/2− 0 = 1/2 bit

I Matches the PPID suggested earlier



Example: PWUNQ

p s1 s2 t i+1 i−1 i+2 i−2 i+12 i−12 r+ u+
1 u+

2 c+ r− u−
1 u−

2 c−

1/4 0 1 1 1 1 2 1 2 1 1 0 1 0 1 0 0 0
1/4 1 0 1 2 1 1 1 2 1 1 1 0 0 1 0 0 0
1/4 0 2 2 1 1 2 1 2 1 1 0 1 0 1 0 0 0
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Expected values 3/2 1 3/2 1 2 1 1 1/2 1/2 0 1 0 0 0

I Recombining the average specificities and average ambiguities yields the PID
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Example: XOR

p s1 s2 t i+1 i−1 i+2 i−2 i+12 i−12 r+ u+
1 u+

2 c+ r− u−
1 u−

2 c−

1/4 0 0 0 1 1 1 1 2 1 1 0 0 1 1 0 0 0
1/4 0 1 1 1 1 1 1 2 1 1 0 0 1 1 0 0 0
1/4 1 0 1 1 1 1 1 2 1 1 0 0 1 1 0 0 0
1/4 1 1 0 1 1 1 1 2 1 1 0 0 1 1 0 0 0

Expected values 1 1 1 1 2 1 1 0 0 1 1 0 0 0

I Recombining the average specificities and average ambiguities yields the PID

R(T : S1, S2) = 1− 1 = 0 bit U(T : S1\S2) = 0− 0 = 0 bit

C(T : S1, S2) = 1− 0 = 1 bit U(T : S2\S1) = 0− 0 = 0 bit

I Identifies redundancy due to shared knowledge from Bertschinger et al. (2013)



Example: XOR

p s1 s2 t i+1 i−1 i+2 i−2 i+12 i−12 r+ u+
1 u+

2 c+ r− u−
1 u−

2 c−

1/4 0 0 0 1 1 1 1 2 1 1 0 0 1 1 0 0 0
1/4 0 1 1 1 1 1 1 2 1 1 0 0 1 1 0 0 0
1/4 1 0 1 1 1 1 1 2 1 1 0 0 1 1 0 0 0
1/4 1 1 0 1 1 1 1 2 1 1 0 0 1 1 0 0 0

Expected values 1 1 1 1 2 1 1 0 0 1 1 0 0 0

I Recombining the average specificities and average ambiguities yields the PID

R(T : S1, S2) = 1− 1 = 0 bit U(T : S1\S2) = 0− 0 = 0 bit

C(T : S1, S2) = 1− 0 = 1 bit U(T : S2\S1) = 0− 0 = 0 bit

I Identifies redundancy due to shared knowledge from Bertschinger et al. (2013)



Example: IMPRDN

p s1 s2 t i+1 i−1 i+2 i−2 i+12 i−12 r+ u+
1 u+

2 c+ r− u−
1 u−

2 c−

1/2 0 0 0 1 0 lg 8/5 0 1 0 lg 8/5 lg 5/4 0 0 0 0 0 0
3/8 1 1 1 1 0 lg 8/3 lg 4/3 lg 8/3 lg 4/3 1 0 lg 4/3 0 0 0 lg 4/3 0
1/8 1 0 1 1 0 lg 8/5 2 3 2 lg 8/5 lg 5/4 0 2 0 0 2 0

Expected 1 0 0.954 0.406 1.406 0.406 0.799 0.201 0.156 0.250 0 0 0.406 0

I Recombining the average specificities and average ambiguities yields the PID

R(T : S1, S2) = 0.799− 0 = 0.799 bit U(T : S1\S2) = 0.201− 0 = 0.201 bit

C(T : S1, S2) = 0.25− 0.25 = 1 bit U(T : S2\S1) = 0.156− 0.406 = −0.25 bit

I May be negative unique information on average if a source is uniquely misinformative
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Comparison to Other Decompositions and Measures

I Approach is most similar to Ince (2017) but differs in how the non-positivity is dealt with

I Similar to Imin of Williams and Beer (2010) but now fully pointwise

I Axiom 4 is similar to Assumption (∗∗) of Bertschinger et al. (2014), i.e. measure ŨI

I This also makes it similar to SVK of Griffith and Koch (2014)

I Like other measures, there is no target monotonicity, i.e. don not have that

Rmin
(
S1, S2→T1

)
≤ Rmin

(
S1, S2→T1, T2

)
I But unlike other measures, there is a target chain rule

Rmin
(
S1, S2→T1, T2

)
= Rmin

(
S1, S2→T1

)
+Rmin

(
S1, S2→T2|T1

)
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Example: TWOBITCOPY

p s1 s2 t i+1 i−1 i+2 i−2 i+12 i−12 r+ u+
1 u+

2 c+ r− u−
1 u−

2 c−

1/4 0 0 00 1 0 1 0 2 0 1 0 0 1 0 0 0 0
1/4 0 1 01 1 0 1 0 2 0 1 0 0 1 0 0 0 0
1/4 1 0 10 1 0 1 0 2 0 1 0 0 1 0 0 0 0
1/4 1 1 11 1 0 1 0 2 0 1 0 0 1 0 0 0 0

Expected values 1 0 1 0 2 0 1 0 0 1 0 0 0 0

I Recombining the average specificities and average ambiguities yields the PID

R(T : S1, S2) = 1− 0 = 1 bit U(T : S1\S2) = 0− 0 = 0 bit

C(T : S1, S2) = 1− 0 = 1 bit U(T : S2\S1) = 0− 0 = 0 bit

I Result is the same as it is for Imin of Williams and Beer (2010)

I The measure and decomposition does not possess the identity property
– Does mean that we can use this decomposition for more than 3 variables



Example: TWOBITCOPY

p s1 s2 t i+1 i−1 i+2 i−2 i+12 i−12 r+ u+
1 u+

2 c+ r− u−
1 u−

2 c−

1/4 0 0 00 1 0 1 0 2 0 1 0 0 1 0 0 0 0
1/4 0 1 01 1 0 1 0 2 0 1 0 0 1 0 0 0 0
1/4 1 0 10 1 0 1 0 2 0 1 0 0 1 0 0 0 0
1/4 1 1 11 1 0 1 0 2 0 1 0 0 1 0 0 0 0

Expected values 1 0 1 0 2 0 1 0 0 1 0 0 0 0

I Recombining the average specificities and average ambiguities yields the PID

R(T : S1, S2) = 1− 0 = 1 bit U(T : S1\S2) = 0− 0 = 0 bit

C(T : S1, S2) = 1− 0 = 1 bit U(T : S2\S1) = 0− 0 = 0 bit

I Result is the same as it is for Imin of Williams and Beer (2010)

I The measure and decomposition does not possess the identity property
– Does mean that we can use this decomposition for more than 3 variables



Example: TWOBITCOPY Horse Race

p s1 s2 t i+1 i−1 i+2 i−2 i+12 i−12 r+ u+
1 u+

2 c+ r− u−
1 u−

2 c−

1/4 b r a 1 0 1 0 2 0 1 0 0 1 0 0 0 0
1/4 b g b 1 0 1 0 2 0 1 0 0 1 0 0 0 0
1/4 w r c 1 0 1 0 2 0 1 0 0 1 0 0 0 0
1/4 w g d 1 0 1 0 2 0 1 0 0 1 0 0 0 0

Expected values 1 0 1 0 2 0 1 0 0 1 0 0 0 0

I Recombining the average specificities and average ambiguities yields the PID

R(T : S1, S2) = 1− 0 = 1 bit U(T : S1\S2) = 0− 0 = 0 bit

C(T : S1, S2) = 1− 0 = 1 bit U(T : S2\S1) = 0− 0 = 0 bit

I Result is the same as it is for Imin of Williams and Beer (2010)

I The measure and decomposition does not possess the identity property
– Does mean that we can use this decomposition for more than 3 variables
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