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What do we mean by local information?

I The entropy and mutual information are the expected values
over the local or pointwise values:

H(X) =〈h(x)〉, where, h(x) =− log p(x);

I(X;Y ) =〈i(x; y)〉, where, i(x; y) = log
p(x|y)
p(x)

.

I Local mutual information can be negative! �
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Why a local interpretation of information?

I Why not?

I Fano — local mutual information can be derived as the primary
citizen from four postulates:

1. once differentiability;

2. same form for conditionals;

3. addativity; and

4. separation for independent ensembles.

I If X and Y are time series, local values measure dynamics over
time which would be useful in applications of PID.

University of Sydney 3



Why a local interpretation of information?

I Why not?

I Fano — local mutual information can be derived as the primary
citizen from four postulates:

1. once differentiability;

2. same form for conditionals;

3. addativity; and

4. separation for independent ensembles.

I If X and Y are time series, local values measure dynamics over
time which would be useful in applications of PID.

University of Sydney 3



Why a local interpretation of information?

I Why not?

I Fano — local mutual information can be derived as the primary
citizen from four postulates:

1. once differentiability;

2. same form for conditionals;

3. addativity; and

4. separation for independent ensembles.

I If X and Y are time series, local values measure dynamics over
time which would be useful in applications of PID.

University of Sydney 3



What do we mean by local PID?

I Formally, there should be some kind of axiom:

Axiom: Localizability

There exists a local measure i∩(t; s1, . . . , sk) for the redundancy of
a specific observation {t, s1, . . . , sk} of {T,S1, . . . ,Sk}, such that:

1. i∩(t; s1, . . . , sk) satisfies the corresponding symmetry and
self-redundancy axioms as per I∩(T ;S1, . . . ,Sk);

2. I∩(T ;S1, . . . ,Sk) = 〈i∩(t; s1, . . . , sk)〉;
3. i∩(t; s1, . . . , sk) is once-differentiable with respect to changes

in p(t, s1, . . . , sk); and

4. i∩(t; s1, . . . , sk) is uniquely defined for the given candidate
redundancy measure.
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What do we mean by local PID?

I In practice, define a PI type locally, solve for the others and
calculate the expectation value for each type.

Global PID for ensemble

I(T ;S1) = U1 +R

I(T ;S2) = U2 +R

I(T ;S1, S2) = U1 + U2 +R+ S

Local PID for each configuration
i(t; s1) = ui

1 + ri

i(t; s2) = ui
2 + ri

i(t; s1, s2) = ui
1 + ui

2 + ri + si

U1 = 〈ui
1〉 U2 = 〈ui

2〉 R = 〈ri〉 S = 〈si〉

p t s1 s2 i(t; s1) i(t; s2) i(t; s1, s2) u1 u2 r s

1/4 0 0 0 log 4/3 log 4/3 log 4/3 u1
1 u1

2 r1 s1

1/4 0 0 1 log 4/3 log 2/3 log 4/3 u2
1 u2

2 r2 s2

1/4 0 1 0 log 2/3 log 4/3 log 4/3 u3
1 u3

2 r3 s3

1/4 1 1 1 1 1 2 u4
1 u4

2 r4 s4

Expected values 0.311 0.31 0.811 U1 U2 R S
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Advantages of the local approach to PID

“However, [Imin] ignore[s] that even though X and Y give the same
amount of information about an outcome z, they tell something different
about the change of the distribution p(z) after an observation in X or Y
has been made.” — Harder, Salge, and Polani 2013

“The problem is that I min does not distinguish whether different random
variables carry the same information or just the same amount of
information. This phenomenon has also been observed by others.”

— Bertschinger, Rauh, Olbrich, and Jost 2013

“Altogether, we conclude that Smax overestimates the intuitive synergy by
miscategorizing merely unique information as synergistic whenever two
or more predictors have unique information about the target.”

— Griffith and Koch 2014
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Advantages of the local approach to PID

“Even though S1 and S2 give the same amount of information about an
outcome t, they tell you something different.”

I Reduced OR (ROR):
p t s1 s2 i(t; s1) i(t; s2) i(t; s1, s2)

1/2 0 0 0 0.415 0.415 1
1/4 1 0 1 −0.585 1 1
1/4 1 1 0 1 −0.585 1

Expected values 0.311 0.311 1

I On average, S1 and S2 each give you the same amount of
information (0.311 bits) yet locally they appear to tell you
something different.

I Unique information may depend on your perspective.
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Existing measures and localisation: Ired

Defining a PID for the average joint mutual information does not
yield unique local PID for each of the configurations.

I Harder, Salge, and Polani 2013
Ired(T : S1;S2) = min

{
IπT (S1 ↘ S2), I

π
T (S2 ↘ S1)

}
,

where

IπT (S1 ↘ S2) =
∑
t, s1

p(t, s1) log
p(s1↘S2)

(t)

p(t)

I Defining,
r(t : s1; s2) = log

p(s1↘S2)
(t)

p(t) ,

does not work when IπT (S1 ↘ S2) = IπT (S2 ↘ S1) because

log
p(s1↘S2)

(t)

p(t) = log
p(s2↘S1)

(t)

p(t) ,

is not generally true—i.e. the choice of r(t : s1; s2) is not unique.
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Existing measures and localisation: ŨI(T:S1\S2)

Defining a PID for the average joint mutual information does not
yield unique local PID for each of the configurations.

I Bertschinger, Rauh, Olbrich, Jost, and Ay 2014

ŨI(T : S1 \ S2) = min
Q∈∆P

MIQ(T : S1|S2)

I Defining
u1(t : s1 \ s2) = miQ(t : s1|s2)

does not work as Q does not necessarily have the same
support as P .

For example, ROR

p t s1 s2

1/2 0 0 0
1/4 1 0 1
1/4 1 1 0

P minimises−−−−−−→
to Q

q t s1 s2

1/2 0 0 0
1/4 1 0 0
1/4 1 1 1
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More on ROR
The unique information in ROR depends on the chosen perspective

1. ”Shared information and unique information should depend only on
the marginal distributions of the pairs (X,Y ) and (X,Z).”

— Bertschinger, Rauh, Olbrich, Jost, and Ay 2014

p t s1 s2

1/2 0 0 0
1/4 1 0 1
1/4 1 1 0

P minimises−−−−−−→
to Q

q t s1 s2

1/2 0 0 0
1/4 1 0 0
1/4 1 1 1

2. Say an observer viewing S1 knows the full joint distribution. If
they observe S1 = 1, then they uniquely know the value of the
target T = 1 in that local case.

I The first perspective is common to all of Imin, Ired and ŨI. They
say there is no unique information in ROR seems to be
incompatible with the second perspective.

University of Sydney 10
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Another interesting local example
IMPERFECTRDN — Griffith et al. 2014; Ince 2016

p t s1 s2 i(t; s1) i(t; s2) i(t; s1, s2) u1 u2 r s

0.5 0 0 0 1 log(5/3) 1 log(6/5)
0.1 1 1 0 1 log(1/3) 1 log(1/3)log(1/3)
0.4 1 1 1 1 1 1

Expected values 1 0.610 1 0.390 0.610

Assumptions:

1. T is an exact copy of S1 (i.e. fully informative) so U2 = 0.

2. The same seems to be the case for the first and third rows as i(t; s2) = i(t; s1), hence
u2 = 0 in those rows.

3a. There is only redundant information in S2 and it has to be the expected value over the
local redundancies for s2, hence r = log(1/3) in the second row.

– Strange! What is misinformative about S1 in the second row?

3b. Maybe this misinformation is unique to u2 instead? But then U1 < 0!
– That might make sense with the local interpretation—the only thing unique about S1

is when it is misinformative.

– But even this is troublesome as this introduces synergy!!

University of Sydney 11
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Final aside: semantics and identity axiom

The 2 bit copy problem

p s1 s2 t

t′ t′′

1/4 00 0 0

a 00

1/4 01 0 1

b 11

1/4 10 1 0

c 10

1/4 11 1 1

d 01

I The identity axiom is an axiom about a semantic situation

R
(
T = (S1, S2) : S1;S2

)
= MI(S1, S2).

I This is potentially problematic as the same probability
distribution may describe two different semantic set-up.
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