Redundant information, total information and higher order interactions

Conor Finn

DEMICS - MPI PKS

June 6, 2023

Overview

1 The functional form of redundant information

2 The total information lattice

Section 1: The functional form of redundant

 information- Does the redundant information depend on the full distribution,

$$
I_{\cap}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right)=f\left(P\left(T, \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right)\right) ?
$$

■ Or does it only depend on the marginal distributions,

$$
I_{\cap}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right)=f\left(P\left(T, \boldsymbol{A}_{1}\right), \ldots, P\left(T, \boldsymbol{A}_{k}\right)\right) ?
$$

■ Consider a set of variables $\boldsymbol{S}=\left\{S_{1}, \ldots, S_{n}\right\}$ and let \boldsymbol{A} be a subset called a source

■ Consider a set of variables $\boldsymbol{S}=\left\{S_{1}, \ldots, S_{n}\right\}$ and let \boldsymbol{A} be a subset called a source
■ The set of all sources corresponds to the power set of S

- Power set can be ordered by set inclusion yielding the inclusion lattice

■ Consider a set of variables $\boldsymbol{S}=\left\{S_{1}, \ldots, S_{n}\right\}$ and let \boldsymbol{A} be a subset called a source
■ The set of all sources corresponds to the power set of S

- Power set can be ordered by set inclusion yielding the inclusion lattice

■ Consider a set of variables $\boldsymbol{S}=\left\{S_{1}, \ldots, S_{n}\right\}$ and let \boldsymbol{A} be a subset called a source
■ The set of all sources corresponds to the power set of \boldsymbol{S}

- Power set can be ordered by set inclusion yielding the inclusion lattice

Partial information decomposition

■ Mutual information $I(T ; \boldsymbol{A})$ quantifies the information provided by a single source

■ Define a function I_{\cap} that quantifies the redundant info provided by multiple sources

Partial information decomposition

■ Mutual information $I(T ; \boldsymbol{A})$ quantifies the information provided by a single source
■ Define a function I_{\cap} that quantifies the redundant info provided by multiple sources

The Williams and Beer Axioms

1 Symmetry: $I_{\cap}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right)$ is invariant under permutations of the \boldsymbol{A}_{i} 's
2 Self-redundancy: $I_{\cap}\left(T ; \boldsymbol{A}_{i}\right)=I(T ; \boldsymbol{A})$
3 Monotonicity:

$$
I_{\cap}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right) \leq I_{\cap}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k-1}\right)
$$

with equality if $\boldsymbol{A}_{k-1} \subseteq \boldsymbol{A}_{k}$

■ Mutual information $I(T ; \boldsymbol{A})$ quantifies the information provided by a single source
■ Define a function I_{\cap} that quantifies the redundant info provided by multiple sources

The Williams and Beer Axioms

1 Symmetry: $I_{\cap}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right)$ is invariant under permutations of the \boldsymbol{A}_{i} 's
2 Self-redundancy: $I_{\cap}\left(T ; \boldsymbol{A}_{i}\right)=I(T ; \boldsymbol{A})$
3 Monotonicity:

$$
I_{\cap}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right) \leq I_{\cap}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k-1}\right)
$$

with equality if $\boldsymbol{A}_{k-1} \subseteq \boldsymbol{A}_{k}$

■ What are the different ways the sources can provide redundant information?

- Answering this question corresponds to determining the domain of I_{\cap}

Domain of the redundancy function

- I_{\cap} can be applied to any collection of sources, e.g. $\left\{\left\{S_{1}\right\},\left\{S_{2}, S_{3}\right\}\right\}$

Domain of the redundancy function

- I_{\cap} can be applied to any collection of sources, e.g. $\left\{\left\{S_{1}\right\},\left\{S_{2}, S_{3}\right\}\right\}$
- Many collection are equivalent due to Axiom 3,

Domain of the redundancy function

■ I_{\cap} can be applied to any collection of sources, e.g. $\left\{\left\{S_{1}\right\},\left\{S_{2}, S_{3}\right\}\right\}$
■ Many collection are equivalent due to Axiom 3, e.g. since $\left\{S_{1}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$,

$$
I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{1}, S_{2}\right\}\right)=I_{\cap}\left(T ;\left\{S_{1}\right\}\right)
$$

Domain of the redundancy function

■ I_{\cap} can be applied to any collection of sources, e.g. $\left\{\left\{S_{1}\right\},\left\{S_{2}, S_{3}\right\}\right\}$
■ Many collection are equivalent due to Axiom 3, e.g. since $\left\{S_{1}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$,

$$
I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{1}, S_{2}\right\}\right)=I_{\cap}\left(T ;\left\{S_{1}\right\}\right)
$$

- The unique collection are those such that no source is a subset of any other
- i.e. the antichains of the inclusion lattice

Domain of the redundancy function

■ I_{\cap} can be applied to any collection of sources, e.g. $\left\{\left\{S_{1}\right\},\left\{S_{2}, S_{3}\right\}\right\}$

- Many collection are equivalent due to Axiom 3, e.g. since $\left\{S_{1}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$,

$$
I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{1}, S_{2}\right\}\right)=I_{\cap}\left(T ;\left\{S_{1}\right\}\right)
$$

- The unique collection are those such that no source is a subset of any other
- i.e. the antichains of the inclusion lattice

- Antichains:

Domain of the redundancy function

■ I_{\cap} can be applied to any collection of sources, e.g. $\left\{\left\{S_{1}\right\},\left\{S_{2}, S_{3}\right\}\right\}$

- Many collection are equivalent due to Axiom 3, e.g. since $\left\{S_{1}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$,

$$
I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{1}, S_{2}\right\}\right)=I_{\cap}\left(T ;\left\{S_{1}\right\}\right)
$$

- The unique collection are those such that no source is a subset of any other
- i.e. the antichains of the inclusion lattice

- Antichains: $\{\varnothing\}$

Domain of the redundancy function

■ I_{\cap} can be applied to any collection of sources, e.g. $\left\{\left\{S_{1}\right\},\left\{S_{2}, S_{3}\right\}\right\}$

- Many collection are equivalent due to Axiom 3, e.g. since $\left\{S_{1}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$,

$$
I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{1}, S_{2}\right\}\right)=I_{\cap}\left(T ;\left\{S_{1}\right\}\right)
$$

- The unique collection are those such that no source is a subset of any other
- i.e. the antichains of the inclusion lattice

- Antichains: $\{\varnothing\}\left\{\left\{S_{1}\right\}\right\},\left\{\left\{S_{1}\right\}\right\}$,

Domain of the redundancy function

■ I_{\cap} can be applied to any collection of sources, e.g. $\left\{\left\{S_{1}\right\},\left\{S_{2}, S_{3}\right\}\right\}$

- Many collection are equivalent due to Axiom 3, e.g. since $\left\{S_{1}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$,

$$
I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{1}, S_{2}\right\}\right)=I_{\cap}\left(T ;\left\{S_{1}\right\}\right)
$$

- The unique collection are those such that no source is a subset of any other
- i.e. the antichains of the inclusion lattice

- Antichains: $\{\varnothing\}\left\{\left\{S_{1}\right\}\right\},\left\{\left\{S_{1}\right\}\right\},\left\{\left\{S_{2}\right\}\right\}$,

Domain of the redundancy function

■ I_{\cap} can be applied to any collection of sources, e.g. $\left\{\left\{S_{1}\right\},\left\{S_{2}, S_{3}\right\}\right\}$

- Many collection are equivalent due to Axiom 3, e.g. since $\left\{S_{1}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$,

$$
I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{1}, S_{2}\right\}\right)=I_{\cap}\left(T ;\left\{S_{1}\right\}\right)
$$

- The unique collection are those such that no source is a subset of any other
- i.e. the antichains of the inclusion lattice

- Antichains: $\{\varnothing\}\left\{\left\{S_{1}\right\}\right\},\left\{\left\{S_{1}\right\}\right\},\left\{\left\{S_{2}\right\}\right\},\left\{\left\{S_{1}, S_{2}\right\}\right\}$ and

Domain of the redundancy function

■ I_{\cap} can be applied to any collection of sources, e.g. $\left\{\left\{S_{1}\right\},\left\{S_{2}, S_{3}\right\}\right\}$

- Many collection are equivalent due to Axiom 3, e.g. since $\left\{S_{1}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$,

$$
I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{1}, S_{2}\right\}\right)=I_{\cap}\left(T ;\left\{S_{1}\right\}\right)
$$

- The unique collection are those such that no source is a subset of any other
- i.e. the antichains of the inclusion lattice

- Antichains: $\{\varnothing\}\left\{\left\{S_{1}\right\}\right\},\left\{\left\{S_{1}\right\}\right\},\left\{\left\{S_{2}\right\}\right\},\left\{\left\{S_{1}, S_{2}\right\}\right\}$ and $\left\{\left\{S_{1}\right\},\left\{S_{2}\right\}\right\}$

Domain of the redundancy function

■ I_{\cap} can be applied to any collection of sources, e.g. $\left\{\left\{S_{1}\right\},\left\{S_{2}, S_{3}\right\}\right\}$
■ Many collection are equivalent due to Axiom 3, e.g. since $\left\{S_{1}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$,

$$
I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{1}, S_{2}\right\}\right)=I_{\cap}\left(T ;\left\{S_{1}\right\}\right)
$$

- The unique collection are those such that no source is a subset of any other
- i.e. the antichains of the inclusion lattice

- Antichains: $\{\varnothing\}\left\{\left\{S_{1}\right\}\right\},\left\{\left\{S_{1}\right\}\right\},\left\{\left\{S_{2}\right\}\right\},\left\{\left\{S_{1}, S_{2}\right\}\right\}$ and $\left\{\left\{S_{1}\right\},\left\{S_{2}\right\}\right\}$
- Axiom 3 also defines a partial order $\preccurlyeq n$ over these antichains
- Axiom 3 also defines a partial order $\preccurlyeq n$ over these antichains
- $I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right) \leq I_{\cap}\left(T ;\left\{S_{1}\right\}\right)$ follows directly
- Axiom 3 also defines a partial order $\preccurlyeq n$ over these antichains
- $I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right) \leq I_{\cap}\left(T ;\left\{S_{1}\right\}\right)$ follows directly
$\left\{S_{1}\right\}$

$$
\left\{S_{1}\right\}\left\{S_{2}\right\}
$$

- Axiom 3 also defines a partial order $\preccurlyeq n$ over these antichains
- $I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right) \leq I_{\cap}\left(T ;\left\{S_{1}\right\}\right)$ follows directly

- Axiom 3 also defines a partial order $\preccurlyeq n$ over these antichains
- $I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right) \leq I_{\cap}\left(T ;\left\{S_{1}\right\}\right)$ follows directly
- $I_{\cap}\left(T ;\left\{S_{1}\right\}\right)=I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{1}, S_{2}\right\}\right) \leq I_{\cap}\left(T ;\left\{S_{1}, S_{2}\right\}\right)$ since $\left\{S_{1}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$

- Axiom 3 also defines a partial order $\preccurlyeq n$ over these antichains
- $I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right) \leq I_{\cap}\left(T ;\left\{S_{1}\right\}\right)$ follows directly
- $I_{\cap}\left(T ;\left\{S_{1}\right\}\right)=I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{1}, S_{2}\right\}\right) \leq I_{\cap}\left(T ;\left\{S_{1}, S_{2}\right\}\right)$ since $\left\{S_{1}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$

- Axiom 3 also defines a partial order $\preccurlyeq n$ over these antichains
- $I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right) \leq I_{\cap}\left(T ;\left\{S_{1}\right\}\right)$ follows directly
- $I_{\cap}\left(T ;\left\{S_{1}\right\}\right)=I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{1}, S_{2}\right\}\right) \leq I_{\cap}\left(T ;\left\{S_{1}, S_{2}\right\}\right)$ since $\left\{S_{1}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$

- Axiom 3 also defines a partial order $\preccurlyeq n$ over these antichains
- $I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right) \leq I_{\cap}\left(T ;\left\{S_{1}\right\}\right)$ follows directly
- $I_{\cap}\left(T ;\left\{S_{1}\right\}\right)=I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{1}, S_{2}\right\}\right) \leq I_{\cap}\left(T ;\left\{S_{1}, S_{2}\right\}\right)$ since $\left\{S_{1}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$
- $I_{\cap}(T ; \varnothing) \leq I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{1}, S_{2}\right\}\right)$ since $\{\varnothing\} \subseteq\left\{S_{1}\right\}$ and $\{\varnothing\} \subseteq\left\{S_{2}\right\}$

- Axiom 3 also defines a partial order $\preccurlyeq n$ over these antichains
- $I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right) \leq I_{\cap}\left(T ;\left\{S_{1}\right\}\right)$ follows directly
- $I_{\cap}\left(T ;\left\{S_{1}\right\}\right)=I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{1}, S_{2}\right\}\right) \leq I_{\cap}\left(T ;\left\{S_{1}, S_{2}\right\}\right)$ since $\left\{S_{1}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$
- $I_{\cap}(T ; \emptyset) \leq I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{1}, S_{2}\right\}\right)$ since $\{\varnothing\} \subseteq\left\{S_{1}\right\}$ and $\{\varnothing\} \subseteq\left\{S_{2}\right\}$

Missing details

- Target variable T does not appear in the redundancy lattice

Missing details

- Target variable T does not appear in the redundancy lattice

Missing details

- Target variable T does not appear in the redundancy lattice

- Leaves the door open to differing interpretations:
- Redundant information could depend on the full distribution

$$
I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right)=f\left(P\left(T, S_{1}, S_{2}\right)\right)
$$

- Or it could depend only on the marginal distributions

$$
I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right)=f\left(P\left(T, S_{1}\right), P\left(T, S_{2}\right)\right)
$$

Missing details

- Target variable T does not appear in the redundancy lattice

- Leaves the door open to differing interpretations:
- Redundant information could depend on the full distribution

$$
I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right)=f\left(P\left(T, S_{1}, S_{2}\right)\right)
$$

- Or it could depend only on the marginal distributions

$$
I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right)=f\left(P\left(T, S_{1}\right), P\left(T, S_{2}\right)\right)
$$

■ Why are we talking about sets of random variables?

Lattice of marginal random vectors

■ Variables should be from the same probability space

$$
\boldsymbol{S}=\left\{S_{1}, S_{2}, S_{3}\right\} \rightarrow(\boldsymbol{S})=\left(S_{1}, S_{2}, S_{3}\right)
$$

Lattice of marginal random vectors

■ Variables should be from the same probability space

$$
\boldsymbol{S}=\left\{S_{1}, S_{2}, S_{3}\right\} \rightarrow(\boldsymbol{S})=\left(S_{1}, S_{2}, S_{3}\right)
$$

Lattice of marginal random vectors

- Variables should be from the same probability space

$$
\boldsymbol{S}=\left\{S_{1}, S_{2}, S_{3}\right\} \rightarrow(\boldsymbol{S})=\left(S_{1}, S_{2}, S_{3}\right)
$$

- Source \boldsymbol{A} corresponds to a marginal vector of \boldsymbol{S}, e.g.

$$
\boldsymbol{A}=\left\{S_{1}, S_{2}\right\} \rightarrow(\boldsymbol{A})=\left(S_{1}, S_{2}\right)
$$

Lattice of marginal random vectors

- Variables should be from the same probability space

$$
\boldsymbol{S}=\left\{S_{1}, S_{2}, S_{3}\right\} \rightarrow(\boldsymbol{S})=\left(S_{1}, S_{2}, S_{3}\right)
$$

- Source \boldsymbol{A} corresponds to a marginal vector of \boldsymbol{S}, e.g.

$$
\boldsymbol{A}=\left\{S_{1}, S_{2}\right\} \rightarrow(\boldsymbol{A})=\left(S_{1}, S_{2}\right)
$$

■ Mutual information: $I(T ; \boldsymbol{A})=f((T, \boldsymbol{A}))$

$$
(\boldsymbol{S})=\left(S_{1}, S_{2}, S_{3}\right) \rightarrow(T, \boldsymbol{S})=\left(T, S_{1}, S_{2}, S_{3}\right)
$$

Lattice of marginal random vectors

- Variables should be from the same probability space

$$
\boldsymbol{S}=\left\{S_{1}, S_{2}, S_{3}\right\} \rightarrow(\boldsymbol{S})=\left(S_{1}, S_{2}, S_{3}\right)
$$

- Source \boldsymbol{A} corresponds to a marginal vector of \boldsymbol{S}, e.g.

Lattice of marginal random vectors

- Variables should be from the same probability space

$$
\boldsymbol{S}=\left\{S_{1}, S_{2}, S_{3}\right\} \rightarrow(\boldsymbol{S})=\left(S_{1}, S_{2}, S_{3}\right)
$$

- Source \boldsymbol{A} corresponds to a marginal vector of \boldsymbol{S}, e.g.

$$
\boldsymbol{A}=\left\{S_{1}, S_{2}\right\} \rightarrow(\boldsymbol{A})=\left(S_{1}, S_{2}\right)
$$

■ Mutual information: $I(T ; \boldsymbol{A})=f((T, \boldsymbol{A}))$

$$
(\boldsymbol{S})=\left(S_{1}, S_{2}, S_{3}\right) \rightarrow(T, \boldsymbol{S})=\left(T, S_{1}, S_{2}, S_{3}\right)
$$

- Lattice of all marginal vectors of (T, \boldsymbol{S}) containing T

Lattice of marginal random vectors

- Variables should be from the same probability space

$$
\boldsymbol{S}=\left\{S_{1}, S_{2}, S_{3}\right\} \rightarrow(\boldsymbol{S})=\left(S_{1}, S_{2}, S_{3}\right)
$$

- Source \boldsymbol{A} corresponds to a marginal vector of \boldsymbol{S}, e.g.

$$
\boldsymbol{A}=\left\{S_{1}, S_{2}\right\} \rightarrow(\boldsymbol{A})=\left(S_{1}, S_{2}\right)
$$

■ Mutual information: $I(T ; \boldsymbol{A})=f((T, \boldsymbol{A}))$

$$
(\boldsymbol{S})=\left(S_{1}, S_{2}, S_{3}\right) \rightarrow(T, \boldsymbol{S})=\left(T, S_{1}, S_{2}, S_{3}\right)
$$

■ Lattice of all marginal vectors of (T, \boldsymbol{S}) containing T

- Mutual information is a monotonic, bottom normalised lattice function of this lattice

Lattice of marginal random vectors

- Variables should be from the same probability space

$$
\boldsymbol{S}=\left\{S_{1}, S_{2}, S_{3}\right\} \rightarrow(\boldsymbol{S})=\left(S_{1}, S_{2}, S_{3}\right)
$$

- Source \boldsymbol{A} corresponds to a marginal vector of \boldsymbol{S}, e.g.

$$
\boldsymbol{A}=\left\{S_{1}, S_{2}\right\} \rightarrow(\boldsymbol{A})=\left(S_{1}, S_{2}\right)
$$

■ Mutual information: $I(T ; \boldsymbol{A})=f((T, \boldsymbol{A}))$

$$
(\boldsymbol{S})=\left(S_{1}, S_{2}, S_{3}\right) \rightarrow(T, \boldsymbol{S})=\left(T, S_{1}, S_{2}, S_{3}\right)
$$

- Lattice of all marginal vectors of (T, \boldsymbol{S}) containing T

■ Mutual information is a monotonic, bottom normalised lattice function of this lattice

Lattice of marginal random vectors

- Variables should be from the same probability space

$$
\boldsymbol{S}=\left\{S_{1}, S_{2}, S_{3}\right\} \rightarrow(\boldsymbol{S})=\left(S_{1}, S_{2}, S_{3}\right)
$$

- Source \boldsymbol{A} corresponds to a marginal vector of \boldsymbol{S}, e.g.

$$
\boldsymbol{A}=\left\{S_{1}, S_{2}\right\} \rightarrow(\boldsymbol{A})=\left(S_{1}, S_{2}\right)
$$

■ Mutual information: $I(T ; \boldsymbol{A})=f((T, \boldsymbol{A}))$

$$
(\boldsymbol{S})=\left(S_{1}, S_{2}, S_{3}\right) \rightarrow(T, \boldsymbol{S})=\left(T, S_{1}, S_{2}, S_{3}\right)
$$

■ Lattice of all marginal vectors of (T, \boldsymbol{S}) containing T

- Mutual information is a monotonic, bottom normalised lattice function of this lattice

Domain of the redundancy function for vectors

- Axiom 2 specifies the function form of redundant information for a single source

$$
I_{\cap}(T ; \boldsymbol{A})=I(T ; \boldsymbol{A})=f((T, \boldsymbol{A}))
$$

Domain of the redundancy function for vectors

- Axiom 2 specifies the function form of redundant information for a single source

$$
I_{\cap}(T ; \boldsymbol{A})=I(T ; \boldsymbol{A})=f((T, \boldsymbol{A}))
$$

- Extending this dependence to multiple marginal vectors

$$
I_{\cap}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right)=f\left(\left(T, \boldsymbol{A}_{1}\right), \ldots,\left(T, \boldsymbol{A}_{k}\right)\right)
$$

Domain of the redundancy function for vectors

- Axiom 2 specifies the function form of redundant information for a single source

$$
I_{\cap}(T ; \boldsymbol{A})=I(T ; \boldsymbol{A})=f((T, \boldsymbol{A}))
$$

- Extending this dependence to multiple marginal vectors

$$
I_{\cap}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right)=f\left(\left(T, \boldsymbol{A}_{1}\right), \ldots,\left(T, \boldsymbol{A}_{k}\right)\right)
$$

■ Many collections of marginal vectors are equivalent due to Axiom 3, e.g.

$$
I_{\cap}\left(\left(T, S_{1}\right),\left(T, S_{1}, S_{2}\right)\right)=I_{\cap}\left(\left(T, S_{1}\right)\right)
$$

Domain of the redundancy function for vectors

- Axiom 2 specifies the function form of redundant information for a single source

$$
I_{\cap}(T ; \boldsymbol{A})=I(T ; \boldsymbol{A})=f((T, \boldsymbol{A}))
$$

- Extending this dependence to multiple marginal vectors

$$
I_{\cap}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right)=f\left(\left(T, \boldsymbol{A}_{1}\right), \ldots,\left(T, \boldsymbol{A}_{k}\right)\right)
$$

■ Many collections of marginal vectors are equivalent due to Axiom 3, e.g.

$$
I_{\cap}\left(\left(T, S_{1}\right),\left(T, S_{1}, S_{2}\right)\right)=I_{\cap}\left(\left(T, S_{1}\right)\right)
$$

- Unique collections are the antichains of the lattice of marginal vectors

Domain of the redundancy function for vectors

- Axiom 2 specifies the function form of redundant information for a single source

$$
I_{\cap}(T ; \boldsymbol{A})=I(T ; \boldsymbol{A})=f((T, \boldsymbol{A}))
$$

- Extending this dependence to multiple marginal vectors

$$
I_{\cap}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right)=f\left(\left(T, \boldsymbol{A}_{1}\right), \ldots,\left(T, \boldsymbol{A}_{k}\right)\right)
$$

- Many collections of marginal vectors are equivalent due to Axiom 3, e.g.

$$
I_{\cap}\left(\left(T, S_{1}\right),\left(T, S_{1}, S_{2}\right)\right)=I_{\cap}\left(\left(T, S_{1}\right)\right)
$$

- Unique collections are the antichains of the lattice of marginal vectors
- Antichains: $\{(T, \varnothing)\},\left\{\left(T, S_{1}\right)\right\},\left\{\left(T, S_{2}\right)\right\},\left\{\left(T, S_{1}, S_{2}\right)\right\}$ and $\left\{\left(T, S_{1}\right),\left(T, S_{2}\right)\right\}$
- Axiom 3 also defines a partial order $\preccurlyeq n$ over these antichains
- Axiom 3 also defines a partial order $\preccurlyeq n$ over these antichains

$$
\text { - } I_{\cap}\left(\left(T, S_{1}\right),\left(T, S_{2}\right)\right) \leq I_{\cap}\left(\left(T, S_{1}\right)\right)
$$

- Axiom 3 also defines a partial order $\preccurlyeq n$ over these antichains

$$
\text { - } I_{\cap}\left(\left(T, S_{1}\right),\left(T, S_{2}\right)\right) \leq I_{\cap}\left(\left(T, S_{1}\right)\right)
$$

- Axiom 3 also defines a partial order $\preccurlyeq n$ over these antichains

$$
\text { - } I_{\cap}\left(\left(T, S_{1}\right),\left(T, S_{2}\right)\right) \leq I_{\cap}\left(\left(T, S_{1}\right)\right)
$$

- Axiom 3 also defines a partial order $\preccurlyeq n$ over these antichains

$$
\begin{aligned}
& \text { - } I_{\cap}\left(\left(T, S_{1}\right),\left(T, S_{2}\right)\right) \leq I_{\cap}\left(\left(T, S_{1}\right)\right) \\
& -\quad I_{\cap}\left(\left(T, S_{1}\right)\right)=I_{\cap}\left(\left(T, S_{1}\right),\left(T, S_{1}, S_{2}\right)\right) \leq I_{\cap}\left(\left(T, S_{1}, S_{2}\right)\right)
\end{aligned}
$$

- Axiom 3 also defines a partial order $\preccurlyeq n$ over these antichains

$$
\begin{aligned}
& \text { - } I_{\cap}\left(\left(T, S_{1}\right),\left(T, S_{2}\right)\right) \leq I_{\cap}\left(\left(T, S_{1}\right)\right) \\
& \text { - } I_{\cap}\left(\left(T, S_{1}\right)\right)=I_{\cap}\left(\left(T, S_{1}\right),\left(T, S_{1}, S_{2}\right)\right) \leq I_{\cap}\left(\left(T, S_{1}, S_{2}\right)\right)
\end{aligned}
$$

- Axiom 3 also defines a partial order $\preccurlyeq n$ over these antichains

$$
\begin{aligned}
& \text { - } I_{\cap}\left(\left(T, S_{1}\right),\left(T, S_{2}\right)\right) \leq I_{\cap}\left(\left(T, S_{1}\right)\right) \\
& \text { - } I_{\cap}\left(\left(T, S_{1}\right)\right)=I_{\cap}\left(\left(T, S_{1}\right),\left(T, S_{1}, S_{2}\right)\right) \leq I_{\cap}\left(\left(T, S_{1}, S_{2}\right)\right)
\end{aligned}
$$

- Axiom 3 also defines a partial order $\preccurlyeq n$ over these antichains

$$
\begin{aligned}
& -I_{\cap}\left(\left(T, S_{1}\right),\left(T, S_{2}\right)\right) \leq I_{\cap}\left(\left(T, S_{1}\right)\right) \\
& -I_{\cap}\left(\left(T, S_{1}\right)\right)=I_{\cap}\left(\left(T, S_{1}\right),\left(T, S_{1}, S_{2}\right)\right) \leq I_{\cap}\left(\left(T, S_{1}, S_{2}\right)\right) \\
& -I_{\cap}((T, \varnothing)) \leq I_{\cap}\left(\left(T, S_{1}\right),\left(T, S_{2}\right)\right)
\end{aligned}
$$

- Axiom 3 also defines a partial order $\preccurlyeq n$ over these antichains

$$
\begin{aligned}
& -I_{\cap}\left(\left(T, S_{1}\right),\left(T, S_{2}\right)\right) \leq I_{\cap}\left(\left(T, S_{1}\right)\right) \\
& -I_{\cap}\left(\left(T, S_{1}\right)\right)=I_{\cap}\left(\left(T, S_{1}\right),\left(T, S_{1}, S_{2}\right)\right) \leq I_{\cap}\left(\left(T, S_{1}, S_{2}\right)\right) \\
& -I_{\cap}((T, \varnothing)) \leq I_{\cap}\left(\left(T, S_{1}\right),\left(T, S_{2}\right)\right)
\end{aligned}
$$

- Axiom 3 also defines a partial order $\preccurlyeq n$ over these antichains

$$
\begin{aligned}
& -I_{\cap}\left(\left(T, S_{1}\right),\left(T, S_{2}\right)\right) \leq I_{\cap}\left(\left(T, S_{1}\right)\right) \\
& -I_{\cap}\left(\left(T, S_{1}\right)\right)=I_{\cap}\left(\left(T, S_{1}\right),\left(T, S_{1}, S_{2}\right)\right) \leq I_{\cap}\left(\left(T, S_{1}, S_{2}\right)\right) \\
& -I_{\cap}((T, \varnothing)) \leq I_{\cap}\left(\left(T, S_{1}\right),\left(T, S_{2}\right)\right)
\end{aligned}
$$

■ Redundant information only depends on the marginal distributions

$$
I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right)=f\left(P\left(T, S_{1}\right), P\left(T, S_{2}\right)\right)
$$

- If the redundant information depends on the full distribution, then

$$
I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right)=f\left(P\left(T, S_{1}, S_{2}\right)\right)
$$

■ If the redundant information depends on the full distribution, then

$$
I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right)=f\left(P\left(T, S_{1}, S_{2}\right)\right)
$$

- But the joint source clearly also depends on the full distribution

$$
I_{\cap}\left(T ;\left\{S_{1}, S_{2}\right\}\right)=f\left(P\left(T, S_{1}, S_{2}\right)\right)
$$

■ If the redundant information depends on the full distribution, then

$$
I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right)=f\left(P\left(T, S_{1}, S_{2}\right)\right)
$$

- But the joint source clearly also depends on the full distribution

$$
I_{\cap}\left(T ;\left\{S_{1}, S_{2}\right\}\right)=f\left(P\left(T, S_{1}, S_{2}\right)\right)
$$

■ If the redundant information depends on the full distribution, then

$$
I_{\cap}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right)=f\left(P\left(T, S_{1}, S_{2}\right)\right)
$$

- But the joint source clearly also depends on the full distribution

$$
I_{\cap}\left(T ;\left\{S_{1}, S_{2}\right\}\right)=f\left(P\left(T, S_{1}, S_{2}\right)\right)
$$

- Redundant information only depends on the marginal distribution

$$
I_{\cap}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right)=f\left(P\left(T, \boldsymbol{A}_{1}\right), \ldots,\left(T, \boldsymbol{A}_{k}\right)\right)
$$

Section 2: The total information lattice

- I_{\cap} quantifies the redundant information a collection of sources provide about T
- Can we instead quantify the total information I_{\cup} the sources provide about T ?
- I_{\cap} quantifies the redundant information a collection of sources provide about T
- Can we instead quantify the total information I_{\cup} the sources provide about T ?
- this only makes sense if the total information depends only on the marginals

$$
I_{\cup}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right)=f\left(\left(T, \boldsymbol{A}_{1}\right), \ldots,\left(T, \boldsymbol{A}_{k}\right)\right)
$$

- I_{\cap} quantifies the redundant information a collection of sources provide about T
- Can we instead quantify the total information I_{\cup} the sources provide about T ?
- this only makes sense if the total information depends only on the marginals

$$
I_{\cup}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right)=f\left(\left(T, \boldsymbol{A}_{1}\right), \ldots,\left(T, \boldsymbol{A}_{k}\right)\right)
$$

- if we knew the full distribution, then just use the (joint) mutual information

Axioms

1 Symmetry: $I_{\cup}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right)$ is invariant under permutations of the \boldsymbol{A}_{i} 's
2 Self-redundancy: $I_{\cup}\left(T ; \boldsymbol{A}_{i}\right)=I(T ; \boldsymbol{A})$
3 Monotonicity:

$$
I_{\cup}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right) \geq I_{\cup}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k-1}\right)
$$

with equality if $\boldsymbol{A}_{k-1} \supseteq \boldsymbol{A}_{k}$

Axioms

1 Symmetry: $I_{\cup}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right)$ is invariant under permutations of the \boldsymbol{A}_{i} 's
2 Self-redundancy: $I_{\cup}\left(T ; \boldsymbol{A}_{i}\right)=I(T ; \boldsymbol{A})$
3 Monotonicity:

$$
I_{\cup}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right) \geq I_{\cup}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k-1}\right)
$$

with equality if $\boldsymbol{A}_{k-1} \supseteq \boldsymbol{A}_{k}$

- What are the different ways the sources can provide total information?

Axioms

1 Symmetry: $I_{\cup}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right)$ is invariant under permutations of the \boldsymbol{A}_{i} 's
2 Self-redundancy: $I_{\cup}\left(T ; \boldsymbol{A}_{i}\right)=I(T ; \boldsymbol{A})$
3 Monotonicity:

$$
I_{\cup}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right) \geq I_{\cup}\left(T ; \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k-1}\right)
$$

with equality if $\boldsymbol{A}_{k-1} \supseteq \boldsymbol{A}_{k}$

■ What are the different ways the sources can provide total information?

- Answering this question corresponds to determining the domain of I_{\cup}

Domain of the total information function

■ I_{\cup} can be applied to any collection of sources

■ I_{\cup} can be applied to any collection of sources

- Many collection are equivalent due to Axiom 3, e.g. since $\left\{S_{1}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$,

$$
I_{\cup}\left(T ;\left\{S_{1}\right\},\left\{S_{1}, S_{2}\right\}\right)=I_{\cup}\left(T ;\left\{S_{1}, S_{2}\right\}\right)
$$

■ I_{\cup} can be applied to any collection of sources

- Many collection are equivalent due to Axiom 3, e.g. since $\left\{S_{1}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$,

$$
I_{\cup}\left(T ;\left\{S_{1}\right\},\left\{S_{1}, S_{2}\right\}\right)=I_{\cup}\left(T ;\left\{S_{1}, S_{2}\right\}\right)
$$

■ The unique collection are those such that no source is a superset of any other

■ I_{\cup} can be applied to any collection of sources

- Many collection are equivalent due to Axiom 3, e.g. since $\left\{S_{1}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$,

$$
I_{\cup}\left(T ;\left\{S_{1}\right\},\left\{S_{1}, S_{2}\right\}\right)=I_{\cup}\left(T ;\left\{S_{1}, S_{2}\right\}\right)
$$

■ The unique collection are those such that no source is a superset of any other

- the unique collections are also the antichains of the inclusion lattice
- I_{\cup} can be applied to any collection of sources
- Many collection are equivalent due to Axiom 3, e.g. since $\left\{S_{1}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$,

$$
I_{\cup}\left(T ;\left\{S_{1}\right\},\left\{S_{1}, S_{2}\right\}\right)=I_{\cup}\left(T ;\left\{S_{1}, S_{2}\right\}\right)
$$

■ The unique collection are those such that no source is a superset of any other

- the unique collections are also the antichains of the inclusion lattice
- same domain as the redundancy functions I_{\cap}

Total information lattice

■ The elements are the same, but the total information order $\preccurlyeq \cup$ is different

Total information lattice

■ The elements are the same, but the total information order $\preccurlyeq \cup$ is different

- $I_{\cup}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right) \geq I_{\cup}\left(T ;\left\{S_{1}\right\}\right) \geq I_{\cup}(T ; \emptyset)$ follows directly from Axiom 3

Total information lattice

■ The elements are the same, but the total information order $\preccurlyeq \cup$ is different

- $I_{\cup}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right) \geq I_{\cup}\left(T ;\left\{S_{1}\right\}\right) \geq I_{\cup}(T ; \emptyset)$ follows directly from Axiom 3

Total information lattice

■ The elements are the same, but the total information order $\preccurlyeq \cup$ is different

- $I_{\cup}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right) \geq I_{\cup}\left(T ;\left\{S_{1}\right\}\right) \geq I_{\cup}(T ; \emptyset)$ follows directly from Axiom 3

Total information lattice

■ The elements are the same, but the total information order $\preccurlyeq \cup$ is different

- $I_{\cup}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right) \geq I_{\cup}\left(T ;\left\{S_{1}\right\}\right) \geq I_{\cup}(T ; \emptyset)$ follows directly from Axiom 3
- $I_{\cup}\left(T ;\left\{S_{1}, S_{2}\right\}\right)=I_{\cup}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\},\left\{S_{1}, S_{2}\right\}\right) \geq I_{\cup}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right)$ since $\left\{S_{1}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$ and $\left\{S_{2}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$

Total information lattice

■ The elements are the same, but the total information order $\preccurlyeq \cup$ is different

- $I_{\cup}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right) \geq I_{\cup}\left(T ;\left\{S_{1}\right\}\right) \geq I_{\cup}(T ; \emptyset)$ follows directly from Axiom 3
- $I_{\cup}\left(T ;\left\{S_{1}, S_{2}\right\}\right)=I_{\cup}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\},\left\{S_{1}, S_{2}\right\}\right) \geq I_{\cup}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right)$ since $\left\{S_{1}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$ and $\left\{S_{2}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$

Total information lattice

■ The elements are the same, but the total information order $\preccurlyeq \cup$ is different

- $I_{\cup}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right) \geq I_{\cup}\left(T ;\left\{S_{1}\right\}\right) \geq I_{\cup}(T ; \emptyset)$ follows directly from Axiom 3
- $I_{\cup}\left(T ;\left\{S_{1}, S_{2}\right\}\right)=I_{\cup}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\},\left\{S_{1}, S_{2}\right\}\right) \geq I_{\cup}\left(T ;\left\{S_{1}\right\},\left\{S_{2}\right\}\right)$ since $\left\{S_{1}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$ and $\left\{S_{2}\right\} \subseteq\left\{S_{1}, S_{2}\right\}$

Higher-order networks

■ Total information order $\preccurlyeq \cup$ intuition aligns with higher-order networks

Higher-order networks

■ Total information order $\preccurlyeq \cup$ intuition aligns with higher-order networks
■ Same order as the ordering of simplicial complexes containing T

Higher-order networks

- Total information order $\preccurlyeq \cup$ intuition aligns with higher-order networks

■ Same order as the ordering of simplicial complexes containing T

Higher-order networks

- Total information order $\preccurlyeq \cup$ intuition aligns with higher-order networks
- Same order as the ordering of simplicial complexes containing T

Connection between redundant and total information

- Redundancy I_{\cap} and union information I_{\cup} are dual concepts

■ Union information order $\preccurlyeq \cup$ intuition aligns with higher-order networks

Connection between redundant and total information

■ Redundancy I_{\cap} and union information I_{\cup} are dual concepts
■ Union information order $\preccurlyeq \cup$ intuition aligns with higher-order networks

- Are the orders $\preccurlyeq n$ and $\preccurlyeq \cup$ connected by inclusion-exclusion?

$$
I_{\cup}\left(T ; S_{1}, S_{2}\right)=I\left(T ; S_{1}\right)+I\left(T ; S_{2}\right)-I_{\cap}\left(T ; S_{1}, S_{2}\right)
$$

Connection between redundant and total information

- Redundancy I_{\cap} and union information I_{\cup} are dual concepts

■ Union information order $\preccurlyeq \cup$ intuition aligns with higher-order networks

- Are the orders $\preccurlyeq n$ and $\preccurlyeq \cup$ connected by inclusion-exclusion?

$$
I_{\cup}\left(T ; S_{1}, S_{2}\right)=I\left(T ; S_{1}\right)+I\left(T ; S_{2}\right)-I_{\cap}\left(T ; S_{1}, S_{2}\right)
$$

- min and max based approaches are connected

Connection between redundant and total information

- Redundancy I_{\cap} and union information I_{\cup} are dual concepts

■ Union information order $\preccurlyeq \cup$ intuition aligns with higher-order networks

- Are the orders $\preccurlyeq n$ and $\preccurlyeq \cup$ connected by inclusion-exclusion?

$$
I_{\cup}\left(T ; S_{1}, S_{2}\right)=I\left(T ; S_{1}\right)+I\left(T ; S_{2}\right)-I_{\cap}\left(T ; S_{1}, S_{2}\right)
$$

- min and max based approaches are connected
- the Blackwell orders are not connected

Connection between redundant and total information

■ Redundancy I_{\cap} and union information I_{\cup} are dual concepts
■ Union information order $\preccurlyeq \cup$ intuition aligns with higher-order networks

- Are the orders $\preccurlyeq n$ and $\preccurlyeq \cup$ connected by inclusion-exclusion?

$$
I_{\cup}\left(T ; S_{1}, S_{2}\right)=I\left(T ; S_{1}\right)+I\left(T ; S_{2}\right)-I_{\cap}\left(T ; S_{1}, S_{2}\right)
$$

- min and max based approaches are connected
- the Blackwell orders are not connected
- Monotone I_{\cap} requires that

$$
I\left(T ; S_{1}, S_{2}\right) \geq I\left(T ; S_{1}\right)+I\left(T ; S_{2}\right)-I_{\cap}\left(T ; S_{1}, S_{2}\right)
$$

Connection between redundant and total information

- Redundancy I_{\cap} and union information I_{\cup} are dual concepts

■ Union information order $\preccurlyeq \cup$ intuition aligns with higher-order networks

- Are the orders $\preccurlyeq n$ and $\preccurlyeq \cup$ connected by inclusion-exclusion?

$$
I_{\cup}\left(T ; S_{1}, S_{2}\right)=I\left(T ; S_{1}\right)+I\left(T ; S_{2}\right)-I_{\cap}\left(T ; S_{1}, S_{2}\right)
$$

- min and max based approaches are connected
- the Blackwell orders are not connected
- Monotone I_{\cap} requires that

$$
I\left(T ; S_{1}, S_{2}\right) \geq I\left(T ; S_{1}\right)+I\left(T ; S_{2}\right)-I_{\cap}\left(T ; S_{1}, S_{2}\right)
$$

- no assumption about inclusion-exclusion here

Total monotonicity

- The partial information atoms I_{∂} are non-negative iff I_{\cap} is totally monotone

$$
I_{\cap}\left(T ; \bigvee_{1 \leq j \leq k} \alpha_{j}\right) \geq \sum_{\varnothing \neq J \subseteq\{1, \ldots, k\}}(-1)^{|J|-1} I_{\cap}\left(T ; \bigwedge_{j \in J} \alpha_{j}\right)
$$

- The partial information atoms I_{∂} are non-negative iff I_{\cap} is totally monotone

$$
I_{\cap}\left(T ; \bigvee_{1 \leq j \leq k} \alpha_{j}\right) \geq \sum_{\varnothing \neq J \subseteq\{1, \ldots, k\}}(-1)^{|J|-1} I_{\cap}\left(T ; \bigwedge_{j \in J} \alpha_{j}\right)
$$

- for $\alpha_{1}=\left\{S_{1}\right\}, \alpha_{2}=\left\{S_{2}\right\}$ and $\alpha_{2}=\left\{S_{2}\right\}$

$$
\begin{aligned}
I\left(T ;\left(S_{1}, S_{2}, S_{3}\right)\right) \geq & I\left(T ; S_{1}\right)+I\left(T ; S_{2}\right)+I\left(T ; S_{3}\right) \\
& -I_{\cap}\left(T ; S_{1}, S_{2}\right)-I_{\cap}\left(T ; S_{1}, S_{3}\right)-I_{\cap}\left(T ; S_{2}, S_{3}\right) \\
& +I_{\cap}\left(T ; S_{1}, S_{2}, S_{3}\right)
\end{aligned}
$$

- The partial information atoms I_{∂} are non-negative iff I_{\cap} is totally monotone

$$
I_{\cap}\left(T ; \bigvee_{1 \leq j \leq k} \alpha_{j}\right) \geq \sum_{\emptyset \neq J \subseteq\{1, \ldots, k\}}(-1)^{|J|-1} I_{\cap}\left(T ; \bigwedge_{j \in J} \alpha_{j}\right)
$$

- for $\alpha_{1}=\left\{S_{1}\right\}, \alpha_{2}=\left\{S_{2}\right\}$ and $\alpha_{2}=\left\{S_{2}\right\}$

$$
\begin{aligned}
I\left(T ;\left(S_{1}, S_{2}, S_{3}\right)\right) \geq & I\left(T ; S_{1}\right)+I\left(T ; S_{2}\right)+I\left(T ; S_{3}\right) \\
& -I_{\cap}\left(T ; S_{1}, S_{2}\right)-I_{\cap}\left(T ; S_{1}, S_{3}\right)-I_{\cap}\left(T ; S_{2}, S_{3}\right) \\
& +I_{\cap}\left(T ; S_{1}, S_{2}, S_{3}\right)
\end{aligned}
$$

- for $\alpha_{1}=\left\{S_{1}, S_{2}\right\}, \alpha_{2}=\left\{S_{1}, S_{3}\right\}$ and $\alpha_{2}=\left\{S_{2}, S_{3}\right\}$

$$
\begin{aligned}
& I\left(T ;\left(S_{1}, S_{2}, S_{3}\right)\right) \geq I\left(T ;\left(S_{1}, S_{2}\right)\right)+I\left(T ;\left(S_{1}, S_{3}\right)\right)+I\left(\left(T ;\left(S_{2}, S_{3}\right)\right)\right. \\
& \quad-I_{\cap}\left(T ;\left(S_{1}, S_{2}\right),\left(S_{1}, S_{3}\right)\right)-I_{\cap}\left(T ;\left(S_{1}, S_{2}\right),\left(S_{2}, S_{3}\right)\right)-I_{\cap}\left(T ;\left(S_{1}, S_{3}\right),\left(S_{2}, S_{3}\right)\right) \\
& \quad+I_{\cap}\left(T ;\left(S_{1}, S_{2}\right),\left(S_{1}, S_{3}\right),\left(S_{2}, S_{3}\right)\right)
\end{aligned}
$$

- The partial information atoms I_{∂} are non-negative iff I_{\cap} is totally monotone

$$
I_{\cap}\left(T ; \bigvee_{1 \leq j \leq k} \alpha_{j}\right) \geq \sum_{\varnothing \neq J \subseteq\{1, \ldots, k\}}(-1)^{|J|-1} I_{\cap}\left(T ; \bigwedge_{j \in J} \alpha_{j}\right)
$$

- for $\alpha_{1}=\left\{S_{1}\right\}, \alpha_{2}=\left\{S_{2}\right\}$ and $\alpha_{2}=\left\{S_{2}\right\}$

$$
\begin{aligned}
I\left(T ;\left(S_{1}, S_{2}, S_{3}\right)\right) \geq & I\left(T ; S_{1}\right)+I\left(T ; S_{2}\right)+I\left(T ; S_{3}\right) \\
& -I_{\cap}\left(T ; S_{1}, S_{2}\right)-I_{\cap}\left(T ; S_{1}, S_{3}\right)-I_{\cap}\left(T ; S_{2}, S_{3}\right) \\
& +I_{\cap}\left(T ; S_{1}, S_{2}, S_{3}\right)
\end{aligned}
$$

- for $\alpha_{1}=\left\{S_{1}, S_{2}\right\}, \alpha_{2}=\left\{S_{1}, S_{3}\right\}$ and $\alpha_{2}=\left\{S_{2}, S_{3}\right\}$

$$
\begin{aligned}
& I\left(T ;\left(S_{1}, S_{2}, S_{3}\right)\right) \geq I\left(T ;\left(S_{1}, S_{2}\right)\right)+I\left(T ;\left(S_{1}, S_{3}\right)\right)+I\left(\left(T ;\left(S_{2}, S_{3}\right)\right)\right. \\
& \quad-I_{\cap}\left(T ;\left(S_{1}, S_{2}\right),\left(S_{1}, S_{3}\right)\right)-I_{\cap}\left(T ;\left(S_{1}, S_{2}\right),\left(S_{2}, S_{3}\right)\right)-I_{\cap}\left(T ;\left(S_{1}, S_{3}\right),\left(S_{2}, S_{3}\right)\right) \\
& \quad+I_{\cap}\left(T ;\left(S_{1}, S_{2}\right),\left(S_{1}, S_{3}\right),\left(S_{2}, S_{3}\right)\right)
\end{aligned}
$$

■ Total monotonicity for I_{\cap} fails and when a connected I_{\cup} fails to be monotonic

Redundant information I_{\cap} only depends of the marginal distributions

Conclusions

Redundant information I_{\cap} only depends of the marginal distributions

Redundant information I_{\cap} is only one side of the information decomposition problem

Conclusions

Redundant information I_{\cap} only depends of the marginal distributions

Redundant information I_{\cap} is only one side of the information decomposition problem

- We also need to consider the union information I_{\cup}

Conclusions

Redundant information I_{\cap} only depends of the marginal distributions

Redundant information I_{\cap} is only one side of the information decomposition problem

- We also need to consider the union information I_{\cup}
- Easier to consider the monotonicity of I_{\cup} than total monotonicity of I_{\cup}

