Redundant information, total information and higher order interactions

Conor Finn

DEMICS – MPI PKS

June 6, 2023

1 The functional form of redundant information

2 The total information lattice

Section 1: The functional form of redundant information

Does the redundant information depend on the full distribution,

$$I_{\cap}(T; \boldsymbol{A}_1, \dots, \boldsymbol{A}_k) = f(P(T, \boldsymbol{A}_1, \dots, \boldsymbol{A}_k))?$$

• Or does it only depend on the marginal distributions,

$$I_{\cap}(T; \boldsymbol{A}_1, \dots, \boldsymbol{A}_k) = f(P(T, \boldsymbol{A}_1), \dots, P(T, \boldsymbol{A}_k))?$$

 \blacksquare Consider a set of variables ${\boldsymbol S} = \{S_1, \dots, S_n\}$ and let ${\boldsymbol A}$ be a subset called a source

- \blacksquare Consider a set of variables ${\boldsymbol S} = \{S_1, \dots, S_n\}$ and let ${\boldsymbol A}$ be a subset called a source
- \blacksquare The set of all sources corresponds to the power set of ${\boldsymbol S}$
- Power set can be ordered by set inclusion yielding the inclusion lattice

- Consider a set of variables $oldsymbol{S} = \{S_1, \dots, S_n\}$ and let $oldsymbol{A}$ be a subset called a source
- \blacksquare The set of all sources corresponds to the power set of ${\boldsymbol S}$
- Power set can be ordered by set inclusion yielding the inclusion lattice

- \blacksquare Consider a set of variables ${\boldsymbol S} = \{S_1, \dots, S_n\}$ and let ${\boldsymbol A}$ be a subset called a source
- \blacksquare The set of all sources corresponds to the power set of ${\boldsymbol S}$
- Power set can be ordered by set inclusion yielding the inclusion lattice

Partial information decomposition

- Mutual information $I(T; \mathbf{A})$ quantifies the information provided by a single source
- \blacksquare Define a function I_{\cap} that quantifies the redundant info provided by multiple sources

- \blacksquare Mutual information $I(T; \boldsymbol{A})$ quantifies the information provided by a single source
- \blacksquare Define a function I_{\cap} that quantifies the redundant info provided by multiple sources

The Williams and Beer Axioms

1 Symmetry: $I_{\cap}(T; A_1, \dots, A_k)$ is invariant under permutations of the A_i 's

2 Self-redundancy:
$$I_{\cap}(T; \mathbf{A}_i) = I(T; \mathbf{A})$$

3 Monotonicity: $I_{\cap}(T; \boldsymbol{A}_1, \dots, \boldsymbol{A}_k) \leq I_{\cap}(T; \boldsymbol{A}_1, \dots, \boldsymbol{A}_{k-1})$

with equality if $oldsymbol{A}_{k-1} \subseteq oldsymbol{A}_k$

- \blacksquare Mutual information $I(T; \boldsymbol{A})$ quantifies the information provided by a single source
- \blacksquare Define a function I_{\cap} that quantifies the redundant info provided by multiple sources

The Williams and Beer Axioms

1 Symmetry: $I_{\cap}(T; A_1, \dots, A_k)$ is invariant under permutations of the A_i 's

2 Self-redundancy:
$$I_{\cap}(T; \mathbf{A}_i) = I(T; \mathbf{A})$$

3 Monotonicity: $I_{\cap}(T; \boldsymbol{A}_1, \dots, \boldsymbol{A}_k) \leq I_{\cap}(T; \boldsymbol{A}_1, \dots, \boldsymbol{A}_{k-1})$

with equality if $oldsymbol{A}_{k-1} \subseteq oldsymbol{A}_k$

- What are the different ways the sources can provide redundant information?
 - Answering this question corresponds to determining the domain of I_{\cap}

• I_{\cap} can be applied to any collection of sources, e.g. $\{\{S_1\}, \{S_2, S_3\}\}$

- I_{\cap} can be applied to any collection of sources, e.g. $\{\{S_1\}, \{S_2, S_3\}\}$
- Many collection are equivalent due to Axiom 3,

- I_{\cap} can be applied to any collection of sources, e.g. $\{\{S_1\}, \{S_2, S_3\}\}$
- Many collection are equivalent due to Axiom 3, e.g. since $\{S_1\} \subseteq \{S_1, S_2\}$,

$$I_{\cap}(T; \{S_1\}, \{S_1, S_2\}) = I_{\cap}(T; \{S_1\})$$

- I_{\cap} can be applied to any collection of sources, e.g. $\{\{S_1\}, \{S_2, S_3\}\}$
- Many collection are equivalent due to Axiom 3, e.g. since $\{S_1\} \subseteq \{S_1, S_2\}$,

$$I_{\cap}(T; \{S_1\}, \{S_1, S_2\}) = I_{\cap}(T; \{S_1\})$$

- The unique collection are those such that no source is a subset of any other
 - i.e. the antichains of the inclusion lattice

- I_{\cap} can be applied to any collection of sources, e.g. $\{\{S_1\}, \{S_2, S_3\}\}$
- Many collection are equivalent due to Axiom 3, e.g. since $\{S_1\} \subseteq \{S_1, S_2\}$,

$$I_{\cap}(T; \{S_1\}, \{S_1, S_2\}) = I_{\cap}(T; \{S_1\})$$

The unique collection are those such that no source is a subset of any other – i.e. the antichains of the inclusion lattice

- I_{\cap} can be applied to any collection of sources, e.g. $\{\{S_1\}, \{S_2, S_3\}\}$
- Many collection are equivalent due to Axiom 3, e.g. since $\{S_1\} \subseteq \{S_1, S_2\}$,

$$I_{\cap}(T; \{S_1\}, \{S_1, S_2\}) = I_{\cap}(T; \{S_1\})$$

The unique collection are those such that no source is a subset of any other – i.e. the antichains of the inclusion lattice

- I_{\cap} can be applied to any collection of sources, e.g. $\{\{S_1\}, \{S_2, S_3\}\}$
- Many collection are equivalent due to Axiom 3, e.g. since $\{S_1\} \subseteq \{S_1, S_2\}$,

$$I_{\cap}(T; \{S_1\}, \{S_1, S_2\}) = I_{\cap}(T; \{S_1\})$$

- The unique collection are those such that no source is a subset of any other
 - $-\,$ i.e. the antichains of the inclusion lattice

• Antichains: $\{\emptyset\}$ $\{\{S_1\}\}, \{\{S_1\}\}, \{\{S_1\}, \{S_1\}, \{S_1\}$

- I_{\cap} can be applied to any collection of sources, e.g. $\{\{S_1\}, \{S_2, S_3\}\}$
- Many collection are equivalent due to Axiom 3, e.g. since $\{S_1\} \subseteq \{S_1, S_2\}$,

$$I_{\cap}(T; \{S_1\}, \{S_1, S_2\}) = I_{\cap}(T; \{S_1\})$$

- The unique collection are those such that no source is a subset of any other
 - i.e. the antichains of the inclusion lattice

• Antichains: $\{\emptyset\}$ $\{\{S_1\}\}, \{\{S_1\}\}, \{\{S_2\}\}, \{S_3\}, \{S_4\}, \{S_4\}$

- I_{\cap} can be applied to any collection of sources, e.g. $\{\{S_1\}, \{S_2, S_3\}\}$
- Many collection are equivalent due to Axiom 3, e.g. since $\{S_1\} \subseteq \{S_1, S_2\}$,

$$I_{\cap}(T; \{S_1\}, \{S_1, S_2\}) = I_{\cap}(T; \{S_1\})$$

- The unique collection are those such that no source is a subset of any other
 - i.e. the antichains of the inclusion lattice

• Antichains: $\{\emptyset\}$ $\{\{S_1\}\}, \{\{S_1\}\}, \{\{S_2\}\}, \{\{S_1, S_2\}\}$ and

- I_{\cap} can be applied to any collection of sources, e.g. $\{\{S_1\}, \{S_2, S_3\}\}$
- Many collection are equivalent due to Axiom 3, e.g. since $\{S_1\} \subseteq \{S_1, S_2\}$,

$$I_{\cap}(T; \{S_1\}, \{S_1, S_2\}) = I_{\cap}(T; \{S_1\})$$

- The unique collection are those such that no source is a subset of any other
 - i.e. the antichains of the inclusion lattice

• Antichains: $\{\emptyset\}$ $\{\{S_1\}\}, \{\{S_1\}\}, \{\{S_2\}\}, \{\{S_1, S_2\}\}$ and $\{\{S_1\}, \{S_2\}\}$

- I_{\cap} can be applied to any collection of sources, e.g. $\{\{S_1\}, \{S_2, S_3\}\}$
- Many collection are equivalent due to Axiom 3, e.g. since $\{S_1\} \subseteq \{S_1, S_2\}$,

$$I_{\cap}(T; \{S_1\}, \{S_1, S_2\}) = I_{\cap}(T; \{S_1\})$$

- The unique collection are those such that no source is a subset of any other
 - i.e. the antichains of the inclusion lattice

• Antichains: $\{\emptyset\}$ $\{\{S_1\}\}, \{\{S_1\}\}, \{\{S_2\}\}, \{\{S_1, S_2\}\}$ and $\{\{S_1\}, \{S_2\}\}$

 \blacksquare Axiom 3 also defines a partial order \preccurlyeq_{\cap} over these antichains

 \square

- \blacksquare Axiom 3 also defines a partial order \preccurlyeq_{\cap} over these antichains
 - $\ I_{\cap}(T; \{S_1\}, \{S_2\}) \leq I_{\cap}(T; \{S_1\}) \text{ follows directly}$

- \blacksquare Axiom 3 also defines a partial order \preccurlyeq_\cap over these antichains
 - $\ I_{\cap}(T; \{S_1\}, \{S_2\}) \leq I_{\cap}(T; \{S_1\}) \text{ follows directly}$

- \blacksquare Axiom 3 also defines a partial order \preccurlyeq_\cap over these antichains
 - $I_{\cap}(T; \{S_1\}, \{S_2\}) \leq I_{\cap}(T; \{S_1\})$ follows directly

- \blacksquare Axiom 3 also defines a partial order \preccurlyeq_\cap over these antichains
 - $I_{\cap}(T; \{S_1\}, \{S_2\}) \leq I_{\cap}(T; \{S_1\})$ follows directly
 - $\ I_{\cap}(T; \{S_1\}) = I_{\cap}(T; \{S_1\}, \{S_1, S_2\}) \leq I_{\cap}(T; \{S_1, S_2\}) \text{ since } \{S_1\} \subseteq \{S_1, S_2\}$

- \blacksquare Axiom 3 also defines a partial order \preccurlyeq_\cap over these antichains
 - $I_{\cap}(T; \{S_1\}, \{S_2\}) \leq I_{\cap}(T; \{S_1\})$ follows directly
 - $\ I_{\cap}(T; \{S_1\}) = I_{\cap}(T; \{S_1\}, \{S_1, S_2\}) \leq I_{\cap}(T; \{S_1, S_2\}) \text{ since } \{S_1\} \subseteq \{S_1, S_2\}$

- \blacksquare Axiom 3 also defines a partial order \preccurlyeq_\cap over these antichains
 - $I_{\cap}(T; \{S_1\}, \{S_2\}) \leq I_{\cap}(T; \{S_1\})$ follows directly
 - $\ I_{\cap}(T; \{S_1\}) = I_{\cap}(T; \{S_1\}, \{S_1, S_2\}) \leq I_{\cap}(T; \{S_1, S_2\}) \text{ since } \{S_1\} \subseteq \{S_1, S_2\}$

- \blacksquare Axiom 3 also defines a partial order \preccurlyeq_\cap over these antichains
 - $\ I_{\cap}(T; \{S_1\}, \{S_2\}) \leq I_{\cap}(T; \{S_1\})$ follows directly
 - $\ I_{\cap}(T; \{S_1\}) = I_{\cap}(T; \{S_1\}, \{S_1, S_2\}) \leq I_{\cap}(T; \{S_1, S_2\}) \text{ since } \{S_1\} \subseteq \{S_1, S_2\}$
 - $\ I_{\cap}(T; \varnothing) \leq I_{\cap}(T; \{S_1\}, \{S_1, S_2\}) \text{ since } \{\varnothing\} \subseteq \{S_1\} \text{ and } \{\varnothing\} \subseteq \{S_2\}$

- \blacksquare Axiom 3 also defines a partial order \preccurlyeq_{\cap} over these antichains
 - $\ I_{\cap}(T; \{S_1\}, \{S_2\}) \leq I_{\cap}(T; \{S_1\})$ follows directly
 - $\ I_{\cap}(T; \{S_1\}) = I_{\cap}(T; \{S_1\}, \{S_1, S_2\}) \leq I_{\cap}(T; \{S_1, S_2\}) \text{ since } \{S_1\} \subseteq \{S_1, S_2\}$
 - $\ I_{\cap}(T; \varnothing) \leq I_{\cap}(T; \{S_1\}, \{S_1, S_2\}) \text{ since } \{\varnothing\} \subseteq \{S_1\} \text{ and } \{\varnothing\} \subseteq \{S_2\}$

Missing details

 \blacksquare Target variable T does not appear in the redundancy lattice

Missing details

 \blacksquare Target variable T does not appear in the redundancy lattice

 \blacksquare Target variable T does not appear in the redundancy lattice

• Leaves the door open to differing interpretations:

- Redundant information could depend on the full distribution

 $I_{\cap}(T; \{S_1\}, \{S_2\}) = f(P(T, S_1, S_2))$

- Or it could depend only on the marginal distributions

 $I_{\cap}(T; \{S_1\}, \{S_2\}) = f(P(T, S_1), P(T, S_2))$

 \blacksquare Target variable T does not appear in the redundancy lattice

• Leaves the door open to differing interpretations:

- Redundant information could depend on the full distribution

 $I_{\cap}(T; \{S_1\}, \{S_2\}) = f(P(T, S_1, S_2))$

- Or it could depend only on the marginal distributions

$$I_{\cap}(T; \{S_1\}, \{S_2\}) = f(P(T, S_1), P(T, S_2))$$

Why are we talking about sets of random variables?

$$S = \{S_1, S_2, S_3\} \to (S) = (S_1, S_2, S_3)$$

$$S = \{S_1, S_2, S_3\} \to (S) = (S_1, S_2, S_3)$$

$$S = \{S_1, S_2, S_3\} \to (S) = (S_1, S_2, S_3)$$

• Source A corresponds to a marginal vector of S, e.g.

$$A = \{S_1, S_2\} \to (A) = (S_1, S_2)$$

$$S = \{S_1, S_2, S_3\} \to (S) = (S_1, S_2, S_3)$$

Source A corresponds to a marginal vector of S, e.g.

$$A = \{S_1, S_2\} \to (A) = (S_1, S_2)$$

$$(\mathbf{S}) = (S_1, S_2, S_3) \to (T, \mathbf{S}) = (T, S_1, S_2, S_3)$$

$$S = \{S_1, S_2, S_3\} \to (S) = (S_1, S_2, S_3)$$

Source A corresponds to a marginal vector of S, e.g.

$$A = \{S_1, S_2\} \to (A) = (S_1, S_2)$$

$$(\mathbf{S}) = (S_1, S_2, S_3) \to (T, \mathbf{S}) = (T, S_1, S_2, S_3)$$

$$S = \{S_1, S_2, S_3\} \to (S) = (S_1, S_2, S_3)$$

Source A corresponds to a marginal vector of S, e.g.

$$A = \{S_1, S_2\} \to (A) = (S_1, S_2)$$

• Mutual information: $I(T; \mathbf{A}) = f((T, \mathbf{A}))$

$$(\mathbf{S}) = (S_1, S_2, S_3) \to (T, \mathbf{S}) = (T, S_1, S_2, S_3)$$

 \blacksquare Lattice of all marginal vectors of (T, \boldsymbol{S}) containing T

$$S = \{S_1, S_2, S_3\} \to (S) = (S_1, S_2, S_3)$$

Source A corresponds to a marginal vector of S, e.g.

$$A = \{S_1, S_2\} \to (A) = (S_1, S_2)$$

$$(\mathbf{S}) = (S_1, S_2, S_3) \to (T, \mathbf{S}) = (T, S_1, S_2, S_3)$$

- \blacksquare Lattice of all marginal vectors of (T, \boldsymbol{S}) containing T
- Mutual information is a monotonic, bottom normalised lattice function of this lattice

$$S = \{S_1, S_2, S_3\} \to (S) = (S_1, S_2, S_3)$$

Source A corresponds to a marginal vector of S, e.g.

$$\boldsymbol{A} = \{S_1, S_2\} \rightarrow (\boldsymbol{A}) = (S_1, S_2)$$

$$(\mathbf{S}) = (S_1, S_2, S_3) \to (T, \mathbf{S}) = (T, S_1, S_2, S_3)$$

- \blacksquare Lattice of all marginal vectors of (T, \boldsymbol{S}) containing T
- Mutual information is a monotonic, bottom normalised lattice function of this lattice

$$S = \{S_1, S_2, S_3\} \to (S) = (S_1, S_2, S_3)$$

Source A corresponds to a marginal vector of S, e.g.

$$A = \{S_1, S_2\} \to (A) = (S_1, S_2)$$

$$(\mathbf{S}) = (S_1, S_2, S_3) \to (T, \mathbf{S}) = (T, S_1, S_2, S_3)$$

- \blacksquare Lattice of all marginal vectors of (T, \boldsymbol{S}) containing T
- Mutual information is a monotonic, bottom normalised lattice function of this lattice

Domain of the redundancy function for vectors

Axiom 2 specifies the function form of redundant information for a single source

$$I_{\cap}(T; \boldsymbol{A}) = I(T; \boldsymbol{A}) = f((T, \boldsymbol{A}))$$

Axiom 2 specifies the function form of redundant information for a single source

$$I_{\cap}(T; \boldsymbol{A}) = I(T; \boldsymbol{A}) = f((T, \boldsymbol{A}))$$

Extending this dependence to multiple marginal vectors

$$I_{\cap}(T; \boldsymbol{A}_1, \dots, \boldsymbol{A}_k) = f((T, \boldsymbol{A}_1), \dots, (T, \boldsymbol{A}_k))$$

$$I_{\cap}(T; \boldsymbol{A}) = I(T; \boldsymbol{A}) = f((T, \boldsymbol{A}))$$

Extending this dependence to multiple marginal vectors

$$I_{\cap}(T; \boldsymbol{A}_1, \dots, \boldsymbol{A}_k) = f((T, \boldsymbol{A}_1), \dots, (T, \boldsymbol{A}_k))$$

• Many collections of marginal vectors are equivalent due to Axiom 3, e.g.

$$I_{\cap}((T, S_1), (T, S_1, S_2)) = I_{\cap}((T, S_1))$$

$$I_{\cap}(T; \boldsymbol{A}) = I(T; \boldsymbol{A}) = f((T, \boldsymbol{A}))$$

Extending this dependence to multiple marginal vectors

$$I_{\cap}(T; \boldsymbol{A}_1, \dots, \boldsymbol{A}_k) = f((T, \boldsymbol{A}_1), \dots, (T, \boldsymbol{A}_k))$$

Many collections of marginal vectors are equivalent due to Axiom 3, e.g.

$$I_{\cap}((T, S_1), (T, S_1, S_2)) = I_{\cap}((T, S_1))$$

Unique collections are the antichains of the lattice of marginal vectors

$$I_{\cap}(T; \boldsymbol{A}) = I(T; \boldsymbol{A}) = f((T, \boldsymbol{A}))$$

Extending this dependence to multiple marginal vectors

$$I_{\cap}(T; \boldsymbol{A}_1, \dots, \boldsymbol{A}_k) = f((T, \boldsymbol{A}_1), \dots, (T, \boldsymbol{A}_k))$$

• Many collections of marginal vectors are equivalent due to Axiom 3, e.g.

$$I_{\cap}((T, S_1), (T, S_1, S_2)) = I_{\cap}((T, S_1))$$

Unique collections are the antichains of the lattice of marginal vectors

• Antichains: $\{(T, \emptyset)\}$, $\{(T, S_1)\}$, $\{(T, S_2)\}$, $\{(T, S_1, S_2)\}$ and $\{(T, S_1), (T, S_2)\}$

 \square

 \blacksquare Axiom 3 also defines a partial order \preccurlyeq_{\cap} over these antichains

 \square

- \blacksquare Axiom 3 also defines a partial order \preccurlyeq_{\cap} over these antichains
 - $I_{\cap} ((T, S_1), (T, S_2)) \le I_{\cap} ((T, S_1))$

■ Axiom 3 also defines a partial order \preccurlyeq_{\cap} over these antichains - $I_{\cap}((T, S_1), (T, S_2)) \leq I_{\cap}((T, S_1))$

 (T, S_1) $(T, S_1), (T, S_2)$

■ Axiom 3 also defines a partial order \preccurlyeq_{\cap} over these antichains - $I_{\cap}((T, S_1), (T, S_2)) \leq I_{\cap}((T, S_1))$

 \square

 \blacksquare Axiom 3 also defines a partial order \preccurlyeq_{\cap} over these antichains

$$- I_{\cap} ((T, S_1), (T, S_2)) \le I_{\cap} ((T, S_1))$$

 $- I_{\cap} ((T, S_1)) = I_{\cap} ((T, S_1), (T, S_1, S_2)) \le I_{\cap} ((T, S_1, S_2))$

• Axiom 3 also defines a partial order \preccurlyeq_{\cap} over these antichains

$$- I_{\cap} ((T, S_1), (T, S_2)) \le I_{\cap} ((T, S_1))$$

 $- I_{\cap} ((T, S_1)) = I_{\cap} ((T, S_1), (T, S_1, S_2)) \le I_{\cap} ((T, S_1, S_2))$

 \blacksquare Axiom 3 also defines a partial order \preccurlyeq_{\cap} over these antichains

$$- I_{\cap}((T, S_1), (T, S_2)) \le I_{\cap}((T, S_1))$$

 $- I_{\cap} ((T, S_1)) = I_{\cap} ((T, S_1), (T, S_1, S_2)) \le I_{\cap} ((T, S_1, S_2))$

- \blacksquare Axiom 3 also defines a partial order \preccurlyeq_{\cap} over these antichains

$$- I_{\cap} ((T, S_1), (T, S_2)) \le I_{\cap} ((T, S_1))$$

- $I_{\cap} ((T, S_1)) = I_{\cap} ((T, S_1), (T, S_1, S_2)) \le I_{\cap} ((T, S_1, S_2))$
- $I_{\cap} \big((T, \emptyset) \big) \leq I_{\cap} \big((T, S_1), (T, S_2) \big)$

• Axiom 3 also defines a partial order \preccurlyeq_{\cap} over these antichains

$$- I_{\cap} ((T, S_1), (T, S_2)) \le I_{\cap} ((T, S_1))$$

- $I_{\cap}((T, S_1)) = I_{\cap}((T, S_1), (T, S_1, S_2)) \le I_{\cap}((T, S_1, S_2))$
- $I_{\cap} \big((T, \emptyset) \big) \leq I_{\cap} \big((T, S_1), (T, S_2) \big)$

 \blacksquare Axiom 3 also defines a partial order \preccurlyeq_{\cap} over these antichains

$$- I_{\cap} ((T, S_1), (T, S_2)) \le I_{\cap} ((T, S_1))$$

- $I_{\cap}((T, S_1)) = I_{\cap}((T, S_1), (T, S_1, S_2)) \le I_{\cap}((T, S_1, S_2))$
- $I_{\cap}((T, \emptyset)) \leq I_{\cap}((T, S_1), (T, S_2))$

■ Redundant information only depends on the marginal distributions $I_{\cap}(T; \{S_1\}, \{S_2\}) = f(P(T, S_1), P(T, S_2))$

Functional dependence of redundant information

• If the redundant information depends on the full distribution, then

 $I_{\cap}(T; \{S_1\}, \{S_2\}) = f(P(T, S_1, S_2))$

If the redundant information depends on the full distribution, then

 $I_{\cap}(T; \{S_1\}, \{S_2\}) = f(P(T, S_1, S_2))$

 $-\,$ But the joint source clearly also depends on the full distribution

 $I_{\cap}(T; \{S_1, S_2\}) = f(P(T, S_1, S_2))$

If the redundant information depends on the full distribution, then $I_{\cap}(T;\{S_1\},\{S_2\})=f\big(P(T,S_1,S_2)\big)$

- But the joint source clearly also depends on the full distribution

 $I_{\cap}(T; \{S_1, S_2\}) = f(P(T, S_1, S_2))$

If the redundant information depends on the full distribution, then $I_{\cap}(T;\{S_1\},\{S_2\})=f\big(P(T,S_1,S_2)\big)$

- But the joint source clearly also depends on the full distribution

 $I_{\cap}(T; \{S_1, S_2\}) = f(P(T, S_1, S_2))$

Redundant information only depends on the marginal distribution $I_{\bigcirc}(T; \mathbf{A}_1, \dots, \mathbf{A}_k) = f(P(T, \mathbf{A}_1), \dots, (T, \mathbf{A}_k))$

Section 2: The total information lattice

- $\blacksquare~I_{\cap}$ quantifies the redundant information a collection of sources provide about T
- Can we instead quantify the total information I_{\cup} the sources provide about T?

- $\blacksquare~I_{\cap}$ quantifies the redundant information a collection of sources provide about T
- Can we instead quantify the total information I_{\cup} the sources provide about T?

- this only makes sense if the total information depends only on the marginals

$$I_{\cup}(T; \boldsymbol{A}_1, \dots, \boldsymbol{A}_k) = f((T, \boldsymbol{A}_1), \dots, (T, \boldsymbol{A}_k))$$

- I_{\cap} quantifies the redundant information a collection of sources provide about T
- Can we instead quantify the total information I_{\cup} the sources provide about T?

- this only makes sense if the total information depends only on the marginals

$$I_{\cup}(T; \boldsymbol{A}_1, \dots, \boldsymbol{A}_k) = f((T, \boldsymbol{A}_1), \dots, (T, \boldsymbol{A}_k))$$

- if we knew the full distribution, then just use the (joint) mutual information

Axioms

1 Symmetry: $I_{\cup}(T; A_1, \dots, A_k)$ is invariant under permutations of the A_i 's

2 Self-redundancy:
$$I_{\cup}(T; \mathbf{A}_i) = I(T; \mathbf{A})$$

3 Monotonicity: $I_{\cup}(T; A_1, \dots, A_k) \ge I_{\cup}(T; A_1, \dots, A_{k-1})$ with equality if $A_{k-1} \supseteq A_k$

Axioms

1 Symmetry: $I_{\cup}(T; A_1, \dots, A_k)$ is invariant under permutations of the A_i 's

2 Self-redundancy:
$$I_{\cup}(T; \mathbf{A}_i) = I(T; \mathbf{A})$$

3 Monotonicity: $I_{\cup}(T; \boldsymbol{A}_1, \dots, \boldsymbol{A}_k) \geq I_{\cup}(T; \boldsymbol{A}_1, \dots, \boldsymbol{A}_{k-1})$

with equality if $oldsymbol{A}_{k-1} \supseteq oldsymbol{A}_k$

• What are the different ways the sources can provide total information?

Axioms

1 Symmetry: $I_{\cup}(T; A_1, \dots, A_k)$ is invariant under permutations of the A_i 's

2 Self-redundancy:
$$I_{\cup}(T; \mathbf{A}_i) = I(T; \mathbf{A})$$

3 Monotonicity: $I_{\cup}(T; \boldsymbol{A}_1, \dots, \boldsymbol{A}_k) \geq I_{\cup}(T; \boldsymbol{A}_1, \dots, \boldsymbol{A}_{k-1})$

with equality if $oldsymbol{A}_{k-1} \supseteq oldsymbol{A}_k$

- What are the different ways the sources can provide total information?
 - Answering this question corresponds to determining the domain of I_{\cup}

• I_{\cup} can be applied to any collection of sources

- I_{\cup} can be applied to any collection of sources
- Many collection are equivalent due to Axiom 3, e.g. since $\{S_1\} \subseteq \{S_1, S_2\}$,

$$I_{\cup}(T; \{S_1\}, \{S_1, S_2\}) = I_{\cup}(T; \{S_1, S_2\})$$

- $\blacksquare~I_{\cup}$ can be applied to any collection of sources
- Many collection are equivalent due to Axiom 3, e.g. since $\{S_1\} \subseteq \{S_1, S_2\}$,

$$I_{\cup}(T; \{S_1\}, \{S_1, S_2\}) = I_{\cup}(T; \{S_1, S_2\})$$

The unique collection are those such that no source is a superset of any other

- I_{\cup} can be applied to any collection of sources
- Many collection are equivalent due to Axiom 3, e.g. since $\{S_1\} \subseteq \{S_1, S_2\}$,

$$I_{\cup}(T; \{S_1\}, \{S_1, S_2\}) = I_{\cup}(T; \{S_1, S_2\})$$

The unique collection are those such that no source is a superset of any other
 the unique collections are also the antichains of the inclusion lattice

- I_{\cup} can be applied to any collection of sources
- Many collection are equivalent due to Axiom 3, e.g. since $\{S_1\} \subseteq \{S_1, S_2\}$,

$$I_{\cup}(T; \{S_1\}, \{S_1, S_2\}) = I_{\cup}(T; \{S_1, S_2\})$$

- The unique collection are those such that no source is a superset of any other
 - the unique collections are also the antichains of the inclusion lattice
 - same domain as the redundancy functions I_{\cap}

 $-\ I_{\cup}(T;\{S_1\},\{S_2\}) \geq I_{\cup}(T;\{S_1\}) \geq I_{\cup}(T;\varnothing)$ follows directly from Axiom 3

 $-\ I_{\cup}(T;\{S_1\},\{S_2\}) \geq I_{\cup}(T;\{S_1\}) \geq I_{\cup}(T;\varnothing)$ follows directly from Axiom 3

 $-\ I_{\cup}(T;\{S_1\},\{S_2\}) \geq I_{\cup}(T;\{S_1\}) \geq I_{\cup}(T;\varnothing)$ follows directly from Axiom 3

- \blacksquare The elements are the same, but the total information order \preccurlyeq_{\cup} is different
 - $-\ I_{\cup}(T;\{S_1\},\{S_2\}) \geq I_{\cup}(T;\{S_1\}) \geq I_{\cup}(T;\emptyset)$ follows directly from Axiom 3

-
$$I_{\cup}(T; \{S_1, S_2\}) = I_{\cup}(T; \{S_1\}, \{S_2\}, \{S_1, S_2\}) \ge I_{\cup}(T; \{S_1\}, \{S_2\})$$
 since $\{S_1\} \subseteq \{S_1, S_2\}$ and $\{S_2\} \subseteq \{S_1, S_2\}$

- \blacksquare The elements are the same, but the total information order \preccurlyeq_{\cup} is different
 - $-\ I_{\cup}(T;\{S_1\},\{S_2\}) \geq I_{\cup}(T;\{S_1\}) \geq I_{\cup}(T;\emptyset)$ follows directly from Axiom 3

$$\begin{array}{l} - \ I_{\cup}(T;\{S_1,S_2\}) = I_{\cup}(T;\{S_1\},\{S_2\},\{S_1,S_2\}) \geq I_{\cup}(T;\{S_1\},\{S_2\}) \text{ since } \\ \{S_1\} \subseteq \{S_1,S_2\} \text{ and } \{S_2\} \subseteq \{S_1,S_2\} \end{array}$$

$$(T, S_1, S_2)$$

$$(T, S_1), (T, S_2)$$

$$(T, S_2) (T, S_1)$$

$$(\emptyset)$$

- \blacksquare The elements are the same, but the total information order \preccurlyeq_{\cup} is different
 - $-\ I_{\cup}(T;\{S_1\},\{S_2\}) \geq I_{\cup}(T;\{S_1\}) \geq I_{\cup}(T;\emptyset)$ follows directly from Axiom 3

$$\begin{array}{l} - \ I_{\cup}(T;\{S_1,S_2\}) = I_{\cup}(T;\{S_1\},\{S_2\},\{S_1,S_2\}) \geq I_{\cup}(T;\{S_1\},\{S_2\}) \text{ since } \\ \{S_1\} \subseteq \{S_1,S_2\} \text{ and } \{S_2\} \subseteq \{S_1,S_2\} \end{array}$$

 \blacksquare Total information order \preccurlyeq_{\cup} intuition aligns with higher-order networks

Higher-order networks

- \blacksquare Total information order \preccurlyeq_{\cup} intuition aligns with higher-order networks
- \blacksquare Same order as the ordering of simplicial complexes containing T

Higher-order networks

- \blacksquare Total information order \preccurlyeq_{\cup} intuition aligns with higher-order networks
- \blacksquare Same order as the ordering of simplicial complexes containing T

Higher-order networks

- \blacksquare Total information order \preccurlyeq_{\cup} intuition aligns with higher-order networks
- \blacksquare Same order as the ordering of simplicial complexes containing T

- \blacksquare Redundancy I_{\cap} and union information I_{\cup} are dual concepts
- \blacksquare Union information order \preccurlyeq_{\cup} intuition aligns with higher-order networks

- \blacksquare Redundancy I_{\cap} and union information I_{\cup} are dual concepts
- \blacksquare Union information order \preccurlyeq_{\cup} intuition aligns with higher-order networks
- \blacksquare Are the orders \preccurlyeq_\cap and \preccurlyeq_\cup connected by inclusion-exclusion?

$$I_{\cup}(T; S_1, S_2) = I(T; S_1) + I(T; S_2) - I_{\cap}(T; S_1, S_2)$$

- \blacksquare Redundancy I_{\cap} and union information I_{\cup} are dual concepts
- \blacksquare Union information order \preccurlyeq_{\cup} intuition aligns with higher-order networks
- \blacksquare Are the orders \preccurlyeq_\cap and \preccurlyeq_\cup connected by inclusion-exclusion?

$$I_{\cup}(T; S_1, S_2) = I(T; S_1) + I(T; S_2) - I_{\cap}(T; S_1, S_2)$$

- min and max based approaches are connected

- \blacksquare Redundancy I_{\cap} and union information I_{\cup} are dual concepts
- \blacksquare Union information order \preccurlyeq_{\cup} intuition aligns with higher-order networks
- \blacksquare Are the orders \preccurlyeq_\cap and \preccurlyeq_\cup connected by inclusion-exclusion?

$$I_{\cup}(T; S_1, S_2) = I(T; S_1) + I(T; S_2) - I_{\cap}(T; S_1, S_2)$$

- min and max based approaches are connected
- the Blackwell orders are not connected

- \blacksquare Redundancy I_{\cap} and union information I_{\cup} are dual concepts
- \blacksquare Union information order \preccurlyeq_{\cup} intuition aligns with higher-order networks
- \blacksquare Are the orders \preccurlyeq_\cap and \preccurlyeq_\cup connected by inclusion-exclusion?

$$I_{\cup}(T; S_1, S_2) = I(T; S_1) + I(T; S_2) - I_{\cap}(T; S_1, S_2)$$

- min and max based approaches are connected
- the Blackwell orders are not connected
- Monotone I_{\cap} requires that

$$I(T; S_1, S_2) \ge I(T; S_1) + I(T; S_2) - I_{\cap}(T; S_1, S_2)$$

- \blacksquare Redundancy I_{\cap} and union information I_{\cup} are dual concepts
- \blacksquare Union information order \preccurlyeq_{\cup} intuition aligns with higher-order networks
- \blacksquare Are the orders \preccurlyeq_\cap and \preccurlyeq_\cup connected by inclusion-exclusion?

$$I_{\cup}(T; S_1, S_2) = I(T; S_1) + I(T; S_2) - I_{\cap}(T; S_1, S_2)$$

- min and max based approaches are connected
- the Blackwell orders are not connected
- Monotone I_{\cap} requires that

$$I(T; S_1, S_2) \ge I(T; S_1) + I(T; S_2) - I_{\cap}(T; S_1, S_2)$$

- no assumption about inclusion-exclusion here

 \blacksquare The partial information atoms I_∂ are non-negative iff I_\cap is totally monotone

$$I_{\cap}(T; \bigvee_{1 \le j \le k} \alpha_j) \ge \sum_{\emptyset \ne J \subseteq \{1, \dots, k\}} (-1)^{|J|-1} I_{\cap}(T; \bigwedge_{j \in J} \alpha_j)$$

 \square

 \blacksquare The partial information atoms I_∂ are non-negative iff I_\cap is totally monotone

$$I_{\cap}(T; \bigvee_{1 \le j \le k} \alpha_j) \ge \sum_{\emptyset \ne J \subseteq \{1, \dots, k\}} (-1)^{|J|-1} I_{\cap}(T; \bigwedge_{j \in J} \alpha_j)$$

- for $\alpha_1 = \{S_1\}$, $\alpha_2 = \{S_2\}$ and $\alpha_2 = \{S_2\}$

$$\begin{split} I\big(T;(S_1,S_2,S_3)\big) &\geq I(T;S_1) + I(T;S_2) + I(T;S_3) \\ &\quad -I_{\cap}(T;S_1,S_2) - I_{\cap}(T;S_1,S_3) - I_{\cap}(T;S_2,S_3) \\ &\quad +I_{\cap}(T;S_1,S_2,S_3) \end{split}$$

 \square

 \blacksquare The partial information atoms I_∂ are non-negative iff I_\cap is totally monotone

$$I_{\cap}(T; \bigvee_{1 \le j \le k} \alpha_j) \ge \sum_{\emptyset \ne J \subseteq \{1, \dots, k\}} (-1)^{|J|-1} I_{\cap}(T; \bigwedge_{j \in J} \alpha_j)$$

- for $\alpha_1 = \{S_1\}$, $\alpha_2 = \{S_2\}$ and $\alpha_2 = \{S_2\}$

$$I(T; (S_1, S_2, S_3)) \ge I(T; S_1) + I(T; S_2) + I(T; S_3) - I_{\cap}(T; S_1, S_2) - I_{\cap}(T; S_1, S_3) - I_{\cap}(T; S_2, S_3) + I_{\cap}(T; S_1, S_2, S_3)$$

$$\begin{aligned} &-\text{ for } \alpha_1 = \{S_1, S_2\}, \ \alpha_2 = \{S_1, S_3\} \text{ and } \alpha_2 = \{S_2, S_3\} \\ &I\big(T; (S_1, S_2, S_3)\big) \geq I\big(T; (S_1, S_2)\big) + I\big(T; (S_1, S_3)\big) + I\big((T; (S_2, S_3)\big) \\ &-I_{\cap}\big(T; (S_1, S_2), (S_1, S_3)\big) - I_{\cap}\big(T; (S_1, S_2), (S_2, S_3)\big) - I_{\cap}\big(T; (S_1, S_3), (S_2, S_3)\big) \\ &+I_{\cap}\big(T; (S_1, S_2), (S_1, S_3), (S_2, S_3)\big) \end{aligned}$$

 \square

 \blacksquare The partial information atoms I_∂ are non-negative iff I_\cap is totally monotone

$$I_{\cap}(T; \bigvee_{1 \le j \le k} \alpha_j) \ge \sum_{\emptyset \ne J \subseteq \{1, \dots, k\}} (-1)^{|J|-1} I_{\cap}(T; \bigwedge_{j \in J} \alpha_j)$$

- for $\alpha_1=\{S_1\}\text{, }\alpha_2=\{S_2\}$ and $\alpha_2=\{S_2\}$

$$I(T; (S_1, S_2, S_3)) \ge I(T; S_1) + I(T; S_2) + I(T; S_3) - I_{\cap}(T; S_1, S_2) - I_{\cap}(T; S_1, S_3) - I_{\cap}(T; S_2, S_3) + I_{\cap}(T; S_1, S_2, S_3)$$

$$\begin{aligned} &-\text{ for } \alpha_1 = \{S_1, S_2\}, \, \alpha_2 = \{S_1, S_3\} \text{ and } \alpha_2 = \{S_2, S_3\} \\ &I\big(T; (S_1, S_2, S_3)\big) \geq I\big(T; (S_1, S_2)\big) + I\big(T; (S_1, S_3)\big) + I\big((T; (S_2, S_3)\big) \\ &-I_{\cap}\big(T; (S_1, S_2), (S_1, S_3)\big) - I_{\cap}\big(T; (S_1, S_2), (S_2, S_3)\big) - I_{\cap}\big(T; (S_1, S_3), (S_2, S_3)\big) \\ &+I_{\cap}\big(T; (S_1, S_2), (S_1, S_3), (S_2, S_3)\big) \end{aligned}$$

 \blacksquare Total monotonicity for I_{\cap} fails and when a connected I_{\cup} fails to be monotonic

Redundant information I_{\cap} is only one side of the information decomposition problem

Redundant information I_{\cap} is only one side of the information decomposition problem

– We also need to consider the union information I_{\cup}

Redundant information I_{\cap} is only one side of the information decomposition problem

– We also need to consider the union information I_{\cup}

– Easier to consider the monotonicity of I_{\cup} than total monotonicity of I_{\cup}