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Information Theory

I (Shannon) entropy: expected information in a realisation of a random variable

H(X) =
∑
x

p(x) log 1
p(x) ≥ 0

I The Shannon inequalities provide means to define non-negative symmetric quantity

H(X), H(Y ) ≤ H(X,Y ) ≤ H(X) +H(Y )

H(X|Y ) H(Y |X)I(X;Y )

H(Y )H(X)

H(X,Y )

I(X;Y ) := H(X) +H(Y )−H(X,Y ) ≥ 0

H(X|Y ) := H(X,Y )−H(Y ) ≥ 0

H(Y |X) := H(X,Y )−H(X) ≥ 0

I The mutual information quantifies the interdependency between two random variables

I(X;Y ) =
∑
x, y

p(x, y) log
p(x, y)

p(x)p(y)
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Multivariate Information Theory
Can we quantify the mutual interdependence between three or more random variables?

I(X;Y ;Z)

H(X|Y, Z)

H(Y |X,Z) H(Z|X,Y )

I(X,Z|Y )I(X,Y |Z)

I(Y, Z|X)

I For two variables we had

I(X;Y ) := H(X) +H(Y )−H({X,Y }) ≥ 0.

I For three variables we have the co-information

I(X;Y ;X) := I(X;Y ) + I(X;Z)− I(X; {Y, Z}).
a.k.a. the multivariate mutual information,
interaction information, amounts of information

I However, this quantity can be negative!

I What is negative information?

I This is because we don’t have Shannon inequalities for multivariate information.
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Present shortcomings and problems

I No well agreed-upon generalisation of the mutual information

I Cannot decompose multivariate interdependency
– Unique, redundant and synergistic information

I In fact, even worse — it cannot distinguish between systems with vastly different
internal interdependency structures
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Why bother to solve this problem?

I Neuroscience:

– Currently, information theory can measure neural information storage and transfer

– Quantifying information modification requires multivariate information theory

I Feature selection in machine learning:

– Consider a data set with known heart disease risk factors:

– Smoker or non-smoker might contribute a large amount of unique information;

– Obesity and diabetes might be largely redundant;

– Genetic risks and age might be most important synergistically with other features.

I Lossless compression of structured databases:

– high-dimensional redundancies need to be removed

– Shannon’s theory is not a very useful for multivariate compression
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Unique, redundant and synergistic information

Consider three random variables X, Y and Z and suppose we are interested in
predicting the value of X from Y and Z

I Unique information: source Z may contain
information about X that source Y does not,
or vice versa

X Y Z P

0 0 0 1/2
1 0 1 1/2

I Redundant information: source Y may contain
the same information as source Z about X

X Y Z P

0 0 0 1/2
1 1 1 1/2

I Synergistic information: it is possible that
neither source Z nor source Y contain
information about X but together they do

X Y Z P

0 0 0 1/4
1 0 1 1/4
1 1 0 1/4
0 1 1 1/4
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Decomposing bivariate dependency
In general, all three types of information are present simultaneously

I We seek a meaningful decomposition of I(X; {Y,Z})

X Y Z P

0 0 0 1/4
0 0 1 1/4
0 1 0 1/4
1 1 1 1/4

{Y Z} {Y } {Y }{Z} {Z}

I(X : {Y,Z})

I(X : Y ) I(X : Z)

I Shannon’s information theory insufficient for the decomposition

CoI(X;Y ;Z) := I(X;Y ) + I(X;Z)− I(X; {Y, Z})
=RI(X : Y ;Z)− SI(X : Y ;Z)
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Partial information decomposition

An axiomatic framework for decomposing multivariate dependence introduced in 2010
by Williams and Beer

I Principled method for decomposing the multivariate information for an arbitrary
number of variables

I Derived from axioms a measure of redundancy I∩ must satisfy

Axioms

(1) Symmetry: I∩ is invariant under permutations of the Yi’s

(2) Self-redundancy: I∩(X : Y ) = I(X;Y )

(3) Monotonicity: I∩(X : Y1; . . . ;Yk) ≤ I∩(X : Y1; . . . ;Yk−1)

I Based on the intuitive notions from set theory
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Partial information decomposition
Möbius inversion over the lattice yields partial information atoms

SI(X : 1; 2) = I(X : {1, 2})− RI(X : 1; 2)−UI(X : 1)−UI(X : 2)

UI(X : 1) = I(X : 1)− RI(X : 1; 2)

UI(X : 2) = I(X : 2)− RI(X : 1; 2)

RI(X : 1; 2) = I∩(X : 1; 2)

SI(X : 1; 2) UI(X : 1) RI(X : 1; 2) UI(X : 2)

I(X : {1, 2})

I(X : 1) I(X : 2)
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PID is elegant, however...

I These axioms alone do not uniquely specify the form of I∩!

– Need to either introduce new axioms to obtain uniqueness

– Or directly specify a redundancy measure

I Current three competing redundancy measures—none of which are satisfactory

– Williams and Beer PID measure Imin (same amount, not the same information)

– Harder et al. Ired (difficult to calculate and bivariate only)

– Bertschinger et al. ŨI (difficult to calculate and bivariate only)
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– Bertschinger et al. ŨI (difficult to calculate and bivariate only)



Ongoing research direction

In which direction are we taking our research — our unique edge

I We believe that defining a measure which is built from the ground up with a
meaningful local intepretation will be fruitful

I No obvious reason why multivariate information theory should not be localisable
– Despite this not many others work on local based approaches

I “The problem is Imin does not distinguish whether sources carry the same
information or just the same amount of information”

– Going fully local should avoid this issue

I Local approach frees up the problem in many ways

I Promising work to be published soon—writing up now!
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Questions?



Redundancy measures: Imin

Original measure of redundancy introduced by Williams and Beer

Imin(X : Y1, . . . , Yk) =
∑
x

p(x)min
Yi

I(X = x;Yi)

I Semi-local approach: for each X = x the redundant information is the minimum
information provided by all of the sources Yi

I Widely critised after its introduction — two bit copy problem

X Y Z P

00 0 0 1/4
01 0 1 1/4
10 1 0 1/4
01 1 1 1/4

Imin(X : Y ;Z) = 1 bit

I “The problem is Imin does not distinguish whether sources carry the same information
or just the same amount of information”
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Redundancy measures: Ired
Based on information geometry and introduced by Harder et al.

Ired(Z : X;Y ) = min
{
IπZ (X ↘ Y ) , IπZ (X ↘ Y )

}
where IπZ (X ↘ Y ) is the mutual information between Z and X expressed in terms of
the mutual information between Z and Y .

I Only able to quantify bivariate
redundancy: multivariate extension highly non-trivial
and evaluation is intractable

I Not even clear that it does indeed capture the
redundant information

I No meaningful local intepretation
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Unique information measure: ŨI

Indroduced by Bertschinger et al. — game-theoretic motivation

I Defining the unique information implicitly defines the redundant information in the
partial information decomposition framework

I If a source contains unique information then there must be a way to exploit this
information in a decision problem

I No unique local intepretation

I Worse than that

X Y Z P

0 0 0 1/2
1 0 1 1/4
1 1 0 1/4

ŨI(X : Y ) = ŨI(X : Y ) = 0 bit



Unique information measure: ŨI
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