Multivariate Information
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» The mutual information quantifies the interdependency between two random variables
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» For two variables we had

I(X;Y)=H(X)+HY)-H{X,Y}) >0.

» For three variables we have the co-information

I(X;Y;X) = I1(X;Y)+ I(X; Z) - [(X;{Y, Z}).

» However, this quantity can be negative!

» What is negative information?

» This is because we don't have Shannon inequalities for multivariate information.
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Unique, redundant and synergistic information

Consider three random variables X, Y and Z and suppose we are interested in
predicting the value of X from Y and Z

>

Unique information: source Z may contain
information about X that source Y does not,
or vice versa

Redundant information: source Y may contain
the same information as source Z about X

Synergistic information: it is possible that
neither source Z nor source Y contain
information about X but together they do
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Decomposing bivariate dependency

In general, all three types of information are present simultaneously

» We seek a meaningful decomposition of I(X;{Y, Z})

(X :{Y,2})
—
X|]y z| P
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I(X:Y) I(X:2)

» Shannon's information theory insufficient for the decomposition
Col(X;Y; Z) =1(X;Y) + I(X; Z2) - I(X; {Y, Z})
=RI(X :Y;Z)-SI(X :Y;2)
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(2) Self-redundancy: In(X :Y) =1(X;Y)
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» Based on the intuitive notions from set theory
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Mobius inversion over the lattice yields partial information atoms
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SI(X : 1;2)
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» We believe that defining a measure which is built from the ground up with a
meaningful local intepretation will be fruitful
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No obvious reason why multivariate information theory should not be localisable
— Despite this not many others work on local based approaches

v

“The problem is I, does not distinguish whether sources carry the same
information or just the same amount of information”
— Going fully local should avoid this issue

v

Local approach frees up the problem in many ways

v

Promising work to be published soon—writing up now!



Questions?



Redundancy measures: I,

Original measure of redundancy introduced by Williams and Beer

Imin(X : Y1,..., Y} Zp mlnI =uz;Y;)



Redundancy measures: I,

Original measure of redundancy introduced by Williams and Beer

Imin(X : Y1,..., Y} Zp mlnI =uz;Y;)

» Semi-local approach: for each X = x the redundant information is the minimum
information provided by all of the sources Y;



Redundancy measures: I,

Original measure of redundancy introduced by Williams and Beer

Imin(X : Y1,..., Y} Zp mlnI =uz;Y;)

» Semi-local approach: for each X = x the redundant information is the minimum
information provided by all of the sources Y;

» Widely critised after its introduction — two bit copy problem

X|y zJ] P

0[]0 o]1/4
01|00 1| 1/4
100/1 o0/ 1/4
011 1| 1/4




Redundancy measures: I,

Original measure of redundancy introduced by Williams and Beer

Imin(X : Y1,..., Y} Zp mlnI =uz;Y;)

» Semi-local approach: for each X = x the redundant information is the minimum
information provided by all of the sources Y;

» Widely critised after its introduction — two bit copy problem

X|y zJ] P

0[]0 o1/ _
01| 0 1| 1/4 Imin(X :Y;Z) =1 bit
101 0] 1/4
011 11| 1/4




Redundancy measures: I,

Original measure of redundancy introduced by Williams and Beer

Imin(X : Y1,..., Y} Zp mlnI =uz;Y;)

» Semi-local approach: for each X = x the redundant information is the minimum
information provided by all of the sources Y;

» Widely critised after its introduction — two bit copy problem

X|y zJ] P

0[]0 o1/ _
01| 0 1| 1/4 Imin(X :Y;Z) =1 bit
101 0] 1/4
011 11| 1/4

“The problem is I,i, does not distinguish whether sources carry the same information
or just the same amount of information”



Redundancy measures: I,eq
Based on information geometry and introduced by Harder et al.

Lea(Z : X;Y) =min {IZ(X \Y), IZ(X \\Y)}

where 17(X N\, Y) is the mutual information between Z and X expressed in terms of
the mutual information between Z and Y.



Redundancy measures: I,eq
Based on information geometry and introduced by Harder et al.

Lea(Z : X;Y) =min {IZ(X \Y), IZ(X \\Y)}

where 17(X N\, Y) is the mutual information between Z and X expressed in terms of
the mutual information between Z and Y.




Redundancy measures: I,eq
Based on information geometry and introduced by Harder et al.
Led(Z: X5Y) = min{Ig(X NY), IZ(X N\ Y)}

where 17(X N\, Y) is the mutual information between Z and X expressed in terms of
the mutual information between Z and Y.

» Only able to quantify bivariate
redundancy: multivariate extension highly non-trivial
and evaluation is intractable




Redundancy measures: I,eq
Based on information geometry and introduced by Harder et al.
Led(Z: X5Y) = min{Ig(X NY), IZ(X N\ Y)}

where 17(X N\, Y) is the mutual information between Z and X expressed in terms of
the mutual information between Z and Y.

» Only able to quantify bivariate
redundancy: multivariate extension highly non-trivial
and evaluation is intractable

> Not even clear that it does indeed capture the
redundant information

pavy)(2)8.

p(ely = 0) T Np(ele = 1)



Redundancy measures: I,eq
Based on information geometry and introduced by Harder et al.
Led(Z: X5Y) = min{Ig(X NY), IZ(X N\ Y)}

where 17(X N\, Y) is the mutual information between Z and X expressed in terms of
the mutual information between Z and Y.

» Only able to quantify bivariate
redundancy: multivariate extension highly non-trivial
and evaluation is intractable

> Not even clear that it does indeed capture the
redundant information

pavy)(2)8.

> No meaningful local intepretation

p(zly =0) p(zlz =1)



Unique information measure: Ul

Indroduced by Bertschinger et al. — game-theoretic motivation

> Defining the unique information implicitly defines the redundant information in the
partial information decomposition framework



Unique information measure: Ul

Indroduced by Bertschinger et al. — game-theoretic motivation

> Defining the unique information implicitly defines the redundant information in the
partial information decomposition framework

» If a source contains unique information then there must be a way to exploit this
information in a decision problem



Unique information measure: Ul

Indroduced by Bertschinger et al. — game-theoretic motivation

> Defining the unique information implicitly defines the redundant information in the
partial information decomposition framework

» If a source contains unique information then there must be a way to exploit this
information in a decision problem

» No unique local intepretation



Unique information measure: Ul

Indroduced by Bertschinger et al. — game-theoretic motivation

> Defining the unique information implicitly defines the redundant information in the
partial information decomposition framework

» If a source contains unique information then there must be a way to exploit this
information in a decision problem

» No unique local intepretation

» Worse than that

X[y zJ P
oo of1/2
110 1] 1/4
1|1 0] 1/4




Unique information measure: Ul

Indroduced by Bertschinger et al. — game-theoretic motivation

> Defining the unique information implicitly defines the redundant information in the
partial information decomposition framework

» If a source contains unique information then there must be a way to exploit this
information in a decision problem

» No unique local intepretation

» Worse than that

X[y zJ P
00 ot2 UL(X :Y)=UI(X:Y) =0 bit
1 0 1 1/4
1 1 0 1/4




