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Information Theory



Information content

How much information h do I get from knowing the outcome x of a variable X?

I If the outcome was certain, then we should get no information.

I The more surprising the outcome, the more information we should get.

I If two independent outcomes occur, then the total information that we get should be
equal to the sum of the information that we get from each outcome.

The unique function that satisfies the criteria is called the information content,

h(x) = log
1

p(x)
= − log p(x) ≥ 0.
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Joint and conditional information content

With a second random variable Y , we can consider the joint information content,

h(x, y) = − log p(x, y) ≥ 0.

I Since p(x, y) ≤ p(x), p(y), we know that h(x, y) ≥ h(x), h(y).

We can also consider the conditional information content,

h(x|y) = − log p(x|y) = − log p(x, y) + log p(y)

= h(x, y)− h(y) ≥ 0.
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Entropy, joint entropy and conditional entropy

The expected information content of a random variable is called the entropy,

H(X) = EX [h(x)] = −
∑
x∈X

p(x) log p(x) ≥ 0,

I Non-negativity of the entropy follows directly from that of the information content.

Similarly, we have the joint and conditional entropy, which are also non-negative,

H(X,Y ) = EXY [h(x, y)] = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) ≥ 0,

H(X|Y ) = EXY [h(x|y)] = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x|y) ≥ 0.
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Mutual information and pointwise mutual information
The pointwise mutual information is defined as follows,

i(x; y) = h(x) + h(y)− h(x, y).

I In contrast to the various information contents, this function is not non-negative.

Nevertheless, the mutual information is non-negative,

I(X;Y ) = EXY [i(x, y)]

= H(X) +H(Y )−H(X,Y )

=
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

= DKL(PXY ||PX ⊗ PY ) ≥ 0.
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Summarising the basic functions

H(X|Y ) H(Y |X)I(X;Y )

H(Y )H(X)

H(X,Y )

H(X) +H(Y ) ≥ H(X,Y ) ≥ H(X), H(Y ) ≥ 0

H(X|Y ) = H(X,Y )−H(Y ) ≥ 0

H(Y |X) = H(X,Y )−H(X) ≥ 0

I(X;Y ) = H(X) +H(Y )−H(X,Y ) ≥ 0

µ(A\B) µ(B \A)µ(A∩B)

µ(B)

H(Y )

µ(A)

H(X)

µ(A ∪B)

µ(A) + µ(B) ≥ µ(A ∪B) ≥ µ(A), µ(B) ≥ 0

µ(A \B) = µ(A ∪B)− µ(B) ≥ 0

µ(B \A) = µ(A ∪B)− µ(A) ≥ 0

µ(A ∩B) = µ(A) + µ(B)− µ(A ∪B) ≥ 0



Summarising the basic functions

H(X|Y ) H(Y |X)I(X;Y )

H(Y )H(X)

H(X,Y )

H(X) +H(Y ) ≥ H(X,Y ) ≥ H(X), H(Y ) ≥ 0

H(X|Y ) = H(X,Y )−H(Y ) ≥ 0

H(Y |X) = H(X,Y )−H(X) ≥ 0

I(X;Y ) = H(X) +H(Y )−H(X,Y ) ≥ 0

µ(A\B) µ(B \A)µ(A∩B)

µ(B)

H(Y )

µ(A)

H(X)

µ(A ∪B)

µ(A) + µ(B) ≥ µ(A ∪B) ≥ µ(A), µ(B) ≥ 0

µ(A \B) = µ(A ∪B)− µ(B) ≥ 0

µ(B \A) = µ(A ∪B)− µ(A) ≥ 0

µ(A ∩B) = µ(A) + µ(B)− µ(A ∪B) ≥ 0



Summarising the basic functions

H(X|Y ) H(Y |X)I(X;Y )

H(Y )H(X)

H(X,Y )

H(X) +H(Y ) ≥ H(X,Y ) ≥ H(X), H(Y ) ≥ 0

H(X|Y ) = H(X,Y )−H(Y ) ≥ 0

H(Y |X) = H(X,Y )−H(X) ≥ 0

I(X;Y ) = H(X) +H(Y )−H(X,Y ) ≥ 0

µ(A\B) µ(B \A)µ(A∩B)

µ(B)

H(Y )

µ(A)

H(X)

µ(A ∪B)

µ(A) + µ(B) ≥ µ(A ∪B) ≥ µ(A), µ(B) ≥ 0

µ(A \B) = µ(A ∪B)− µ(B) ≥ 0

µ(B \A) = µ(A ∪B)− µ(A) ≥ 0

µ(A ∩B) = µ(A) + µ(B)− µ(A ∪B) ≥ 0



Multivariate mutual information

McGill generalised the MI by defining
the multivariate mutual information,

I(X;Y ;Z) = H(X) +H(Y ) +H(Z)

−H(X,Y )−H(X,Z)−H(Y,Z)

+H(Z, Y, Z)

= I(X;Y ) + I(X;Z)− I
(
X; (Y,Z)

)
=
∑
x,y,z

p(x, y, z) log
p(x, y)p(x, z)p(y, z)

p(x)p(y)p(z)p(x, y, z)

I MMI is not non-negative.
I MMI has “no intuitive meaning”.

I(X;Y ;Z)

H(X|Y, Z)

H(Y |X,Z) H(Z|X,Y )

I(X,Z|Y )I(X,Y |Z)

I(Y, Z|X)

H(Y ) H(Z)

H(X)H(X,Y, Z)
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Partial Information Decomposition



Unique, redundant and synergistic information

Say S1 and S2 provide information about T

I Several types of information

– Unique information U(S1 \ S2;T )

– Redundant information R(S1, S2;T )

– Synergistic information C(S1, S2;T )

I Mutual information captures

I(T ;S1) = U(S1 \ S2;T ) +R(S1, S2;T )

I(T ;S2) = U(S2 \ S1;T ) +R(S1, S2;T )

I Joint mutual information captures

I
(
(S1, S2);T

)
= U(S1\S2;T ) +U(S2\S1;T ) +R(S1, S2;T ) +C(S1, S2;T )

UNQ

p s1 s2 t

1/4 0 0 0
1/4 0 1 0
1/4 1 0 1
1/4 1 1 1

RDN

p s1 s2 t

1/2 0 0 0
1/2 1 1 1

XOR

p s1 s2 t

1/4 0 0 0
1/4 0 1 1
1/4 1 0 1
1/4 1 1 0

RU1 U2

I(S2;T )I(S1;T )

C
I(S1,S2;T )
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Information decomposition

Information decomposition for two source variable is an algebraic problem,

I(T ;S1) = U(S1 \ S2;T ) +R(S1, S2;T ),

I(T ;S2) = U(S2 \ S1;T ) +R(S1, S2;T ),

I
(
(S1, S2);T

)
= U(S1 \ S2;T ) + U(S2 \ S1;T ) +R(S1, S2;T ) + C(S1, S2;T ).

I Explains why the mutual information is not non-negative,

I(X;Y ;Z) = I(X;Y ) + I(X;Z)− I
(
X; (Y, Z)

)
= R(S1, S2;T )− C(S1, S2;T ).

I Can we define one of the quantities to solve the system?
I Can we generalise this to more than two sources?
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Partial information decomposition (PID)

Axiomatic framework for multivariate information decomposition (Williams and Beer, 2010)
I Derived from axioms a measure of redundancy I∩ must satisfy.

Axioms

(1) Symmetry: I∩(S1, . . . , Sn;T ) is invariant under permutations of the Si’s

(2) Self-redundancy: I∩(Si : T ) = I(Si;T )

(3) Monotonicity: I∩(S1; . . . ;Sn;T ) ≤ I∩(S1; . . . ;Sn−1;T )

I Works for an arbitrary number of variables S1, . . . , Sn.
I Based on the intuitive notions from set theory.
I Williams and Beer used these axioms to derive the redundancy lattice.



Partial information decomposition (PID)

Axiomatic framework for multivariate information decomposition (Williams and Beer, 2010)
I Derived from axioms a measure of redundancy I∩ must satisfy.

Axioms

(1) Symmetry: I∩(S1, . . . , Sn;T ) is invariant under permutations of the Si’s

(2) Self-redundancy: I∩(Si : T ) = I(Si;T )

(3) Monotonicity: I∩(S1; . . . ;Sn;T ) ≤ I∩(S1; . . . ;Sn−1;T )

I Works for an arbitrary number of variables S1, . . . , Sn.
I Based on the intuitive notions from set theory.
I Williams and Beer used these axioms to derive the redundancy lattice.



Partial information decomposition (PID)

Axiomatic framework for multivariate information decomposition (Williams and Beer, 2010)
I Derived from axioms a measure of redundancy I∩ must satisfy.

Axioms

(1) Symmetry: I∩(S1, . . . , Sn;T ) is invariant under permutations of the Si’s

(2) Self-redundancy: I∩(Si : T ) = I(Si;T )

(3) Monotonicity: I∩(S1; . . . ;Sn;T ) ≤ I∩(S1; . . . ;Sn−1;T )

I Works for an arbitrary number of variables S1, . . . , Sn.
I Based on the intuitive notions from set theory.
I Williams and Beer used these axioms to derive the redundancy lattice.





Möbius inversion

A Möbius inversion over the lattice yields partial information atoms and equations:

C(S1, S2;T ) = I
(
(S1, S2);T

)
−R(S1, S2;T )

− U(S1 \ S2;T )− U(S2 \ U1;T )

U(S1 \ S2;T ) = I(S1;T )−R(S1, S2;T )

U(S2 \ S1;T ) = I(S2;T )−R(S1, S2;T )

R(S1, S2;T ) = I∩(S1, S2;T )
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Atoms of partial information
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Redundancy measures: Imin

Original measure of redundancy introduced by Williams and Beer (2010),

Imin(S1, . . . , Sn) =
∑
t

p(t) min
Si

i(t;Si),

where i(t;Si) is the specific information, which satisfies I(Si;T ) = ET [i(t;Si)].

I Widely criticised after its introduction: two bit copy and pointwise unique problem.
TWO BIT COPY

p s1 s2 t

1/4 0 0 00
1/4 0 1 01
1/4 1 0 10
1/4 1 1 01

PW UNIQUE

p s1 s2 t

1/4 0 1 1
1/4 1 0 1
1/4 0 2 2
1/4 2 0 2

I “The problem is Imin does not distinguish whether sources carry the same
information or just the same amount of information”
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Redundancy measures: Ired

Based on information geometric methods from Harder et al. (2013),

Ired(S1, S2;T ) = min
{
I πT (S1 ↘ S2) , I πT (S2 ↘ S1)

}
,

where I πZ (X↘Y ) is the MI between T and S1 expressed in terms of T and S2.

I Only works for two source variables (Rauh et al., 2014).

I Not clear why this captures the redundant information.

I No meaningful pointwise interpretation.
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Unique information measure: ŨI

Based on a decision-theoretic motivation from Bertschinger et al. (2014),

ŨI(S1 \ S2;T ) = min
Q∈∆P

IQ(T ;S1|S2),

where ∆P is the set of all joint distributions of the triple (S1, S2, T ) that have the same
marginal distributions of the pairs (S1, T ) and (S2, T ).

I Again, only works for two source variables (Rauh et al., 2014).
I Is equivalent to an approach proposed by Griffith and Koch (2014).

PW UNIQUE

p s1 s2 t

1/4 0 1 1
1/4 1 0 1
1/4 0 2 2
1/4 2 0 2

ŨI(X : Y ) = ŨI(X : Y ) = 0 bit
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Shared Marginal Information



Why can we use Venn diagrams?

H(X|Y ) H(Y |X)I(X;Y )

H(Y )H(X)

H(X,Y )

H(X) +H(Y ) ≥ H(X,Y ) ≥ H(X), H(Y ) ≥ 0

H(X|Y ) = H(X,Y )−H(Y ) ≥ 0

H(Y |X) = H(X,Y )−H(X) ≥ 0

I(X;Y ) = H(X) +H(Y )−H(X,Y ) ≥ 0

µ(A\B) µ(B \A)µ(A∩B)

µ(B)

H(Y )

µ(A)

H(X)

µ(A ∪B)

µ(A) + µ(B) ≥ µ(A ∪B) ≥ µ(A), µ(B) ≥ 0

µ(A \B) = µ(A ∪B)− µ(B) ≥ 0

µ(B \A) = µ(A ∪B)− µ(A) ≥ 0

µ(A ∩B) = µ(A) + µ(B)− µ(A ∪B) ≥ 0
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Venn diagrams and information content

I The information content satisfies the
following inequalities:

h(x, y) ≥ h(x), h(y) ≥ 0,

h(x|y) = h(x, y)− h(y) ≥ 0,

h(y|x) = h(x, y)− h(x) ≥ 0.

i(x; y)h(y|x) h(x|y)

h(x, y)

h(y)

h(x)

I In contrast to the joint and marginal entropy, the joint information content is not
upper bounded by the sum of the marginal information contents.

I Thus, the pointwise mutual information is not non-negative,

i(x; y) = h(x) + h(y)− h(x, y).



Venn diagrams and information content

I The information content satisfies the
following inequalities:

h(x, y) ≥ h(x), h(y) ≥ 0,

h(x|y) = h(x, y)− h(y) ≥ 0,

h(y|x) = h(x, y)− h(x) ≥ 0.

i(x; y)h(y|x) h(x|y)

h(x, y)

h(y)

h(x)

I In contrast to the joint and marginal entropy, the joint information content is not
upper bounded by the sum of the marginal information contents.

I Thus, the pointwise mutual information is not non-negative,

i(x; y) = h(x) + h(y)− h(x, y).



Joint and independent information

Johnny Alice Bob

Indy

BP

Observations: (X,Y ) X Y

Knows: P (X,Y ) P (X) P (Y )

P (X) & P (Y )

Realisation: (x, y) x y

(x, y)

Information: h(x, y) h(x) h(y)

h(x) + h(y)

Venn diagram:

I Johnny knows more than either Alice or Bob.

I This is supported by the inequalities

h(x, y) ≥ h(x), h(y) ≥ 0

h(x|y) = h(x, y)− h(y) ≥ 0

h(y|x) = h(x, y)− h(x) ≥ 0

I Indy can have more or less information than Johnny (no inequality to say otherwise).

I Sometimes Indy thinks he has more information than Johnny despite knowing less.

I This occurs because Indy assumes that the marginal realisations are independent.
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Marginal information sharing
Idea: replace Indy with Eve who makes no assumptions about the information.

Johnny Alice Bob

Eve

BP

Observations: (X,Y ) X Y

Knows: P (X,Y ) P (X) P (Y )

P (X) & P (Y )

Realisation: (x, y) x y

(x, y)

Information: h(x, y) h(x) h(y)

max
(
h(x), h(y)

)

Venn diagram:

I Eve has at least as much information as Alice and Bob, but no more than Johnny.
I Easy to show that Eve’s information is given by max

(
h(x), h(y)

)
=: h(x t y).
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Union and intersection information content
I Union information content

h(x t y) = max
(
h(x), h(y)

)
.

I The union information content satisfies

h(x)+h(y) ≥ h(xty) ≥ h(x), h(y) ≥ 0

I Unique information content

h(xr y) = h(x t y)− h(y)

= max
(
h(x)− h(y), 0

)
≥ 0

h(y r x) = h(x t y)− h(x)

= max
(
0, h(y)− h(x)

)
≥ 0

h(y) = h(xuy)

h(x) = h(xty)

h(xr y)

I Intersection information content

h(x u y) = h(x) + h(y)− h(x t y)

= min
(
h(x), h(y)

)
≥ 0.

I Decomposition
h(x t y) = h(x u y) + h(xr y) + h(y r x)
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Union and intersection entropy

I Union entropy

H(X t Y ) = EXY

[
h(x t y)

]
I The union entropy satisfies

H(X)+H(Y ) ≥ H(XtY ) ≥ H(X), H(Y ) ≥ 0

I Unique information content

H(X \ Y ) = EXY

[
h(xr y)

]
H(Y \X) = EXY

[
h(y r x)

]

H(X\Y ) H(Y \X)H(XuY )

H(Y )H(X)

H(XtY )

I Intersection information content

H(X u Y ) = H(X) +H(Y )−H(X t Y )

= EXY

[
h(x u y)

]
I Decomposition

H(X t Y ) = H(X u Y ) +H(X \ Y ) +H(Y \X)
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Generalised marginal information sharing

I Thus far, we have only considered two marginal observers, Alice and Bob.

I With a third observer, Charlie, we could consider three-way information sharing h(x t y t z).

I We could also consider sharing information through intermediaries. For example:

– If Alice and Bob share their information with Dan, then his information will be given by the
union information h(x t y).

– If Charlie and Dan subsequently share their information with Eve, then her information will
be given by h

(
(x t y) t z).

– Since Eve ultimately ends up with the same marginal information, we would expect that
h(x t y t z) = h

(
(x t y) t z).

I To understand the distinct ways of sharing marginal information we must understand the
algebraic properties of the union and intersection information content.
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Algebraic properties of share marginal information content

I Idempotent

h(x t x) = h(x)

h(x u x) = h(x)

I Commutative

h(x t y) = h(y t x)

h(x u y) = h(y u x)

I Associative

h(x t y t z) = h
(
(x t y) t z

)
= h

(
x t (y t z)

)
h(x u y u z) = h

(
(x u y) u z

)
= h

(
x u (y u z)

)

I Absorption

h
(
x t (x u y)

)
= h(x)

h
(
x u (x t y)

)
= h(x)

I Distributive

h
(
x t (y u z)

)
= h

(
(x t y) u (x t z)

)
h
(
x u (y t z)

)
= h

(
(x u y) t (x u z)

)
I Connexity, i.e. either

h(x t y) = h(x) and h(x u y) = h(y)

or

h(x t y) = h(y) and h(x u y) = h(x)
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Algebraic properties of share marginal information content
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Algebraic structure of shared marginal information content

I Idempotent, commutative, associative and connected by absorbtion implies a lattice.

I If the operators are also distributive then its a distributive lattice.
I If they are also connex, then the algebraic structure is a total order.

h(x t y t z)=h(x)=
h(x t y) =h(x t z)

h(x u y) =
h(y t z) = h(y)

h(x u y uz)=h(z)=
h(x u z) = h(y u z)

h(x t y) = h(x)

h(x u y) = h(y)
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Algebraic properties of share marginal entropy

I Idempotent

H(X tX) = H(X)

H(X uX) = H(X)

I Commutative

H(X t Y ) = H(Y tX)

H(X u Y ) = H(Y uX)

I Associative

H(X t Y t Z) = H
(
(X t Y ) t Z

)
= H

(
X t (Y t Z)

)
H(X u Y u Z) = H

(
(X u Y ) u Z

)
= H

(
X u (Y u Z)

)

I Absorption

H
(
X t (X u Y )

)
= H(X)

H
(
X u (X t Y )

)
= H(X)

I Distributive

H
(
X t (Y u Z)

)
= H

(
(X t Y ) u (X t Z)

)
H
(
X u (Y t Z)

)
= H

(
(X u Y ) t (X u Z)

)

I Connexity is the only property that does not
hold for the entropy.

I Therefore, the shared marginal entropy forms
a distributive lattice.
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h(xtytz)

h(y t z)h(xt z)h(xt y)

h
(
zt(xuy)

)
=

h
(
(xtz)u(ytz)

)b
h
(
xt(yuz)

)
=

h
(
(xty)u(xtz)

)

a h(z)h(y)h(x)

h
(
zu(xty)

)
=

h
(
(xuz)t(yuz)

)c
h
(
xu(ytz)

)
=

h
(
(xuy)t(xuz)

)

h(y u z)h(xu z)h(xu y)

h(xuyuz)

a = h
(
(x t y) u (x t z) u (y t z)

)
= h

((
x t (y u z)

)
u
(
y t (x u z)

))
= h

((
x t (y u z)

)
u
(
z t (x u y)

))
= h

((
y t (x u z)

)
u
(
z t (x u y)

))
= h

((
y u (x t z)

)
t
(
z u (x t y)

))
= h

((
x u (y t z)

)
t
(
z u (x t y)

))
= h

((
x u (y t z)

)
t
(
y u (x t z)

))
= h

((
x u y) t (x u z) t (y u z)

)
b = h

(
y t (x u z)

)
= h

(
(x t y) u (y t z)

)
c = h

(
y u (x t z)

)
= h

(
(x u y) t (y u z)

)
h(x t y)

h(y)h(x)

h(x u y)



Birkhoff’s representation theorem



Shared marginal information content and entropy

h(y r z) =
h
(
y r (y u z)

) h(x r y) =
h
(
x r (y t z)

)

h(z)=h(x u y u z)=
h(x u z) = h(y u z)

h(y) = h(y t z)
= h(x u y)

h(x)=h(x t y t z)=
h(x t y) = h(x t z)

H(XuY uZ)

H(X\Y tZ)

H(Y \|XtZ) H(Z\XtY )

H(XuZ\Y )H(XuY \Z)

H(Y uZ\X)

H(Y ) H(Z)

H(X)H(XtY tZ)



Relating PID to Shared Marginal Information



Synergistic information content

I Eve has no more information than Johnny

h(x, y) ≥ h(x t y)

I Synergistic information content

h(x⊕ y) = h(x, y)− h(x t y)

= min
(
h(y|x), h(x|y)

)
≥ 0

I Mutual information content

i(x; y) = h(x t y)− h(x⊕ y)

I Decomposition

h(x, y) = h(xr y) + h(y r x)+

h(x u y) + h(x⊕ y)

h(y) = h(xuy)h(x⊕ y)
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h(x) = h(x t y)
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Synergistic entropy

I Synergistic entropy

H(X ⊕ Y ) = H(X,Y )−H(X t Y )

= EXY
[
h(x⊕ y))

]
≥ 0

I Mutual information

I(X;Y ) = H(X t Y )−H(X ⊕ Y )

H(X\Y ) H(Y \X)H(XuY )

H(X⊕Y ) H(Y )H(X)

H(X t Y )H(X,Y )

I Decomposition

H(X,Y ) = H(X r Y ) +H(Y rX) +H(X u Y ) +H(X ⊕ Y )

I We can also generalise this argument to any number of joint sources.
– The redundancy lattice from PID then appears as a by-product (a sub-algebra).



Redundancy lattice for info content
h(x, y, z)

h(y, z)h(x, z)h(x, y)

h
(
(x, z) u (y, z)

)
bh

(
(x, y)u (x, z)

)

a h(z)h(y)h(x)

h
(
z u (x, y)

)
ch

(
x u (y, z)

)

h(y u z)h(x u z)h(x u y)

h(x u y u z)

a = h
(
(x, y) u (x, z) u (y, z)

)
b = h

(
(x, y) u (y, z)

)
c = h

(
y u (x, z)

)

h(x, y)

h(y)h(x)

h(x u y)



Recovering the redundancy lattice

We can consider conditional variants of the shared marginal information contents, e.g.

h(x u y|z) = h(x|z) + h(y|z)− h(x t y|z) = min
(
h(x|z), h(y|z)

)
.

We can evaluate the equivalent pointwise mutual information term, e.g.

i(s1 u s2; t) = h(s1 u s2)− h(s1 u s2|t).

I Complete argument for this is provided in (Finn and Lizier, 2018b).
I This yields a pointwise partial information decomposition (Finn and Lizier, 2018a).
I Take the expectation to recover partial information decomposition.



Conclusions



Takeaway points

Information decomposition is an interesting and active area of information theory.
I Theory is not yet completely understood.
I The are a ton of potential applications.

Regarding my research:
I The union and intersection information content are fundamental quantities.
I Birkoff’s representation theorem rigorously connects them to the algebra of sets.
I The redundancy lattice appears as a by product when considering joint variables.
I Pointwise PID is reasonably well developed (more so that most other approaches).

– Works for the information content as well as the mutual information.
– One of the only approaches that works for an arbitrary number of sources.
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Potential applications

I Neuroscience:

– Information theory can measure neural information storage and transfer

– Quantifying information modification requires multivariate information theory

I Feature selection in machine learning:

– Consider a data set with known heart disease risk factors:

– Smoker or non-smoker might contribute a large amount of unique information;

– Obesity and diabetes might be largely redundant;

– Genetic risks or age might be important synergistically with other features.

I Network coding:

– High-dimensional redundancies need to be removed.

– Shannon’s theory is not a very useful for network coding.
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Future work

I Further understand the algebraic structure of multivariate information.
I Relating the existing approaches.
I Continuous information decomposition
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Generalising the synergistic information

I The algebraic structure of joint information is also a lattice.
I Need to explore the relationship with shared marginal information.

I Consider the respective semilattices generated by joint and intersection information.

h(z)h(y)h(x)

h(y u z)h(x u z)h(x u y)

h(x u y u z)

h(x, y, z)

h(y, z)h(x, z)h(x, y)

h(z)h(y)h(x)

h(x, y)

h(y)h(x)

h(y)h(x)

h(x u y)

I Are these semilattices be connected by absorption?



Generalising the synergistic information

I The algebraic structure of joint information is also a lattice.
I Need to explore the relationship with shared marginal information.
I Consider the respective semilattices generated by joint and intersection information.

h(z)h(y)h(x)

h(y u z)h(x u z)h(x u y)

h(x u y u z)

h(x, y, z)

h(y, z)h(x, z)h(x, y)

h(z)h(y)h(x)

h(x, y)

h(y)h(x)

h(y)h(x)

h(x u y)

I Are these semilattices be connected by absorption?



Generalising the synergistic information

I The algebraic structure of joint information is also a lattice.
I Need to explore the relationship with shared marginal information.
I Consider the respective semilattices generated by joint and intersection information.

h(z)h(y)h(x)

h(y u z)h(x u z)h(x u y)

h(x u y u z)

h(x, y, z)

h(y, z)h(x, z)h(x, y)

h(z)h(y)h(x)

h(x, y)

h(y)h(x)

h(y)h(x)

h(x u y)

I Are these semilattices be connected by absorption?



Connecting the joint and intersection information
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I Intersection information content absorbs the joint information content h(x u (x, y)).

I However, the joint information content does not absorb the intersection information
content since h(x, (x u y)) is equal to h(x, y) for h(x) ≥ h(y), i.e. is not equal to h(x).

I Nevertheless, this means that we do get a lattice if we consider the intersection
information content of the various joint information contents (but not vice versa).

I This substructure is the redundancy lattice from partial information decomposition!
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