Two orders for decomposing multivariate information

Conor Finn

Information Processing in Complex Systems 2022

October 20, 2022

Complex systems

Complex systems

- Represent each component using a random variable X_{i}
- The entropy then quantifies our uncertainty about each component

$$
H\left(X_{i}\right)=-\sum_{x_{i} \in X_{i}} p\left(x_{i}\right) \log p\left(x_{i}\right) \geq 0
$$

- The mutual information quantifies the dependence between components

$$
I(X ; Y)=H(X)+H(Y)-H(X, Y)
$$

- Advantages for complex systems:
- Represent each component using a random variable X_{i}
- The entropy then quantifies our uncertainty about each component

$$
H\left(X_{i}\right)=-\sum_{x_{i} \in X_{i}} p\left(x_{i}\right) \log p\left(x_{i}\right) \geq 0
$$

■ The mutual information quantifies the dependence between components

$$
I(X ; Y)=H(X)+H(Y)-H(X, Y)
$$

- Advantages for complex systems:
- Captures both linear and non-linear dependencies
- Represent each component using a random variable X_{i}
- The entropy then quantifies our uncertainty about each component

$$
H\left(X_{i}\right)=-\sum_{x_{i} \in X_{i}} p\left(x_{i}\right) \log p\left(x_{i}\right) \geq 0
$$

■ The mutual information quantifies the dependence between components

$$
I(X ; Y)=H(X)+H(Y)-H(X, Y)
$$

- Advantages for complex systems:
- Captures both linear and non-linear dependencies
- Variables can represent very different quantities
- Represent each component using a random variable X_{i}
- The entropy then quantifies our uncertainty about each component

$$
H\left(X_{i}\right)=-\sum_{x_{i} \in X_{i}} p\left(x_{i}\right) \log p\left(x_{i}\right) \geq 0
$$

■ The mutual information quantifies the dependence between components

$$
I(X ; Y)=H(X)+H(Y)-H(X, Y)
$$

- Advantages for complex systems:
- Captures both linear and non-linear dependencies
- Variables can represent very different quantities
- Model free

Information theory and higher-order interactions

■ There are four distinct ways in which T can depend on S_{1} and S_{2}

■ There are four distinct ways in which T can depend on S_{1} and S_{2}

Uniquely on S_{1}			
\boldsymbol{p}	\boldsymbol{s}_{1}	\boldsymbol{s}_{2}	\boldsymbol{t}
$1 / 4$	0	0	0
$1 / 4$	0	1	0
$1 / 4$	1	0	1
$1 / 4$	1	1	1

■ There are four distinct ways in which T can depend on S_{1} and S_{2}

Uniquely on S_{1}			
\boldsymbol{p}	\boldsymbol{s}_{1}	\boldsymbol{s}_{2}	\boldsymbol{t}
$1 / 4$	0	0	0
$1 / 4$	0	1	0
$1 / 4$	1	0	1
$1 / 4$	1	1	1

Uniquely on			
\boldsymbol{p}	s_{2}	\boldsymbol{s}_{2}	\boldsymbol{t}
$1 / 4$	0	0	0
$1 / 4$	0	1	1
$1 / 4$	1	0	0
$1 / 4$	1	1	1

■ There are four distinct ways in which T can depend on S_{1} and S_{2}

Uniquely on S_{1}			
\boldsymbol{p}	\boldsymbol{s}_{1}	\boldsymbol{s}_{2}	\boldsymbol{t}
$1 / 4$	0	0	0
$1 / 4$	0	1	0
$1 / 4$	1	0	1
$1 / 4$	1	1	1

Uniquely on S_{2}			
\boldsymbol{p}	\boldsymbol{s}_{1}	\boldsymbol{s}_{2}	\boldsymbol{t}
$1 / 4$	0	0	0
$1 / 4$	0	1	1
$1 / 4$	1	0	0
$1 / 4$	1	1	1

Redundantly			
\boldsymbol{p}	\boldsymbol{s}_{1}	\boldsymbol{s}_{2}	\boldsymbol{t}
$1 / 2$	0	0	0
$1 / 2$	1	1	1

■ There are four distinct ways in which T can depend on S_{1} and S_{2}

Uniquely on S_{1}			
\boldsymbol{p}	\boldsymbol{s}_{1}	\boldsymbol{s}_{2}	\boldsymbol{t}
$1 / 4$	0	0	0
$1 / 4$	0	1	0
$1 / 4$	1	0	1
$1 / 4$	1	1	1

Uniquely on S_{2}				
\boldsymbol{p}	\boldsymbol{s}_{1}	\boldsymbol{s}_{2}	\boldsymbol{t}	
$1 / 4$	0	0	0	
$1 / 4$	0	1	1	
$1 / 4$	1	0	0	
$1 / 4$	1	1	1	

Redundantly			
\boldsymbol{p}	\boldsymbol{s}_{1}	\boldsymbol{s}_{2}	\boldsymbol{t}
$1 / 2$	0	0	0
$1 / 2$	1	1	1

Higher-order			
\boldsymbol{p}	\boldsymbol{s}_{1}	\boldsymbol{s}_{2}	\boldsymbol{t}
$1 / 4$	0	0	0
$1 / 4$	0	1	1
$1 / 4$	1	0	1
$1 / 4$	1	1	0

■ There are four distinct ways in which T can depend on S_{1} and S_{2}

Uniquely on S_{1}			
\boldsymbol{p}	\boldsymbol{s}_{1}	\boldsymbol{s}_{2}	\boldsymbol{t}
$1 / 4$	0	0	0
$1 / 4$	0	1	0
$1 / 4$	1	0	1
$1 / 4$	1	1	1

Uniquely on S_{2}			
\boldsymbol{p}	\boldsymbol{s}_{1}	\boldsymbol{s}_{2}	\boldsymbol{t}
$1 / 4$	0	0	0
$1 / 4$	0	1	1
$1 / 4$	1	0	0
$1 / 4$	1	1	1

Redundantly			
\boldsymbol{p}	\boldsymbol{s}_{1}	\boldsymbol{s}_{2}	\boldsymbol{t}
$1 / 2$	0	0	0
$1 / 2$	1	1	1

Higher-order			
\boldsymbol{p}	\boldsymbol{s}_{1}	\boldsymbol{s}_{2}	\boldsymbol{t}
$1 / 4$	0	0	0
$1 / 4$	0	1	1
$1 / 4$	1	0	1
$1 / 4$	1	1	0

■ Three ways to use the mutual information: $I\left(S_{1} ; T\right), I\left(S_{2} ; T\right)$ and $I\left(\left(S_{1}, S_{2}\right) ; T\right)$

The problem

Shannon information theory is ill-equipped for analysing complex systems

Shannon information theory is ill-equipped for analysing complex systems

Solution: information decomposition

■ Mutual information captures

$$
\begin{aligned}
& I\left(S_{1} ; T\right)=U_{1}+R_{1,2} \\
& I\left(S_{2} ; T\right)=U_{2}+R_{1,2}
\end{aligned}
$$

■ Mutual information captures

$$
\begin{aligned}
& I\left(S_{1} ; T\right)=U_{1}+R_{1,2} \\
& I\left(S_{2} ; T\right)=U_{2}+R_{1,2}
\end{aligned}
$$

- Joint mutual information captures

$$
I\left(\left(S_{1}, S_{2}\right) ; T\right)=U_{1}+U_{2}+R_{1,2}+C_{12}
$$

■ Mutual information captures

$$
\begin{aligned}
& I\left(S_{1} ; T\right)=U_{1}+R_{1,2} \\
& I\left(S_{2} ; T\right)=U_{2}+R_{1,2}
\end{aligned}
$$

- Joint mutual information captures

$$
I\left(\left(S_{1}, S_{2}\right) ; T\right)=U_{1}+U_{2}+R_{1,2}+C_{12}
$$

- Can we define one of the quantities to solve the system?

■ How do we generalise this idea to consider more variables?

Partial information decomposition

■ Axiomatic framework for information decomposition (Williams and Beer, 2010)

Partial information decomposition

■ Axiomatic framework for information decomposition (Williams and Beer, 2010)
■ Consider each way n source variables can provide information about T

Partial information decomposition

■ Axiomatic framework for information decomposition (Williams and Beer, 2010)
■ Consider each way n source variables can provide information about T

Partial information decomposition

- Axiomatic framework for information decomposition (Williams and Beer, 2010)

■ Consider each way n source variables can provide information about T

■ Let \boldsymbol{A}_{i} represent a distinct way sources can provide information T

Partial information decomposition

- Axiomatic framework for information decomposition (Williams and Beer, 2010)

■ Consider each way n source variables can provide information about T

■ Let \boldsymbol{A}_{i} represent a distinct way sources can provide information T

- For $n=2$, we have $\boldsymbol{A}_{1}=S_{1}, \boldsymbol{A}_{2}=S_{2}$ and $\boldsymbol{A}_{3}=\left(S_{1}, S_{2}\right)$

Partial information decomposition

- Axiomatic framework for information decomposition (Williams and Beer, 2010)

■ Consider each way n source variables can provide information about T

■ Let \boldsymbol{A}_{i} represent a distinct way sources can provide information T

- For $n=2$, we have $\boldsymbol{A}_{1}=S_{1}, \boldsymbol{A}_{2}=S_{2}$ and $\boldsymbol{A}_{3}=\left(S_{1}, S_{2}\right)$

■ Define a function I_{\cap} that quantifies the redundant information provided by the \boldsymbol{A}_{i} 's

Redundant information

Williams and Beer axioms

1 Symmetry: $I_{\cap}\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k} ; T\right)$ is invariant under permutations of the \boldsymbol{A}_{i} 's
2 Self-redundancy: $I_{\cap}\left(\boldsymbol{A}_{i}: T\right)=I\left(\boldsymbol{A}_{i} ; T\right)$
3 Monotonicity: $I_{\cap}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k} ; T\right) \leq I_{\cap}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k-1} ; T\right)$ with equality if $\boldsymbol{A}_{k-1} \subseteq \boldsymbol{A}_{k}$

Williams and Beer axioms

1 Symmetry: $I_{\cap}\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k} ; T\right)$ is invariant under permutations of the \boldsymbol{A}_{i} 's
2 Self-redundancy: $I_{\cap}\left(\boldsymbol{A}_{i}: T\right)=I\left(\boldsymbol{A}_{i} ; T\right)$
3 Monotonicity: $I_{\cap}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k} ; T\right) \leq I_{\cap}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k-1} ; T\right)$ with equality if $\boldsymbol{A}_{k-1} \subseteq \boldsymbol{A}_{k}$

- I_{\cap} can be applied to any combination of $\boldsymbol{A}_{i}{ }^{\prime}$'s, but many are equivalent
- For $n=2$, we have $\boldsymbol{A}_{1}=S_{1}, \boldsymbol{A}_{2}=S_{2}$ and $\boldsymbol{A}_{3}=\left(S_{1}, S_{2}\right)$
- But by Axiom 3, $I_{\cap}\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{3} ; T\right)=I_{\cap}\left(\boldsymbol{A}_{1} ; T\right)$ since $\boldsymbol{A}_{1} \subseteq \boldsymbol{A}_{3}$

Williams and Beer axioms

1 Symmetry: $I_{\cap}\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k} ; T\right)$ is invariant under permutations of the \boldsymbol{A}_{i} 's
2 Self-redundancy: $I_{\cap}\left(\boldsymbol{A}_{i}: T\right)=I\left(\boldsymbol{A}_{i} ; T\right)$
3 Monotonicity: $I_{\cap}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k} ; T\right) \leq I_{\cap}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k-1} ; T\right)$ with equality if $\boldsymbol{A}_{k-1} \subseteq \boldsymbol{A}_{k}$

- I_{\cap} can be applied to any combination of $\boldsymbol{A}_{i}{ }^{\prime}$'s, but many are equivalent
- For $n=2$, we have $\boldsymbol{A}_{1}=S_{1}, \boldsymbol{A}_{2}=S_{2}$ and $\boldsymbol{A}_{3}=\left(S_{1}, S_{2}\right)$
- But by Axiom 3, $I_{\cap}\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{3} ; T\right)=I_{\cap}\left(\boldsymbol{A}_{1} ; T\right)$ since $\boldsymbol{A}_{1} \subseteq \boldsymbol{A}_{3}$

■ Left with all combinations of sources \boldsymbol{A}_{i} s.t. no source is a subset of any other

- For $n=2$, we have

$$
I_{\cap}\left(\boldsymbol{A}_{1} ; T\right), \quad I_{\cap}\left(\boldsymbol{A}_{2} ; T\right), \quad I_{\cap}\left(\boldsymbol{A}_{3} ; T\right) \quad \text { and } \quad I_{\cap}\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2} ; T\right)
$$

■ The remaining combinations of sources are the antichains of the inclusion lattice

Redundant information

Williams and Beer axioms

1 Symmetry: $I_{\cap}\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k} ; T\right)$ is invariant under permutations of the \boldsymbol{A}_{i} 's
2 Self-redundancy: $I_{\cap}\left(\boldsymbol{A}_{i}: T\right)=I\left(\boldsymbol{A}_{i} ; T\right)$
3 Monotonicity: $I_{\cap}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k} ; T\right) \leq I_{\cap}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k-1} ; T\right)$ with equality if $\boldsymbol{A}_{k-1} \subseteq \boldsymbol{A}_{k}$

- Axiom 3 also defines a partial order $\preccurlyeq n$ over the remaining combinations

Williams and Beer axioms

1 Symmetry: $I_{\cap}\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k} ; T\right)$ is invariant under permutations of the \boldsymbol{A}_{i} 's
2 Self-redundancy: $I_{\cap}\left(\boldsymbol{A}_{i}: T\right)=I\left(\boldsymbol{A}_{i} ; T\right)$
3 Monotonicity: $I_{\cap}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k} ; T\right) \leq I_{\cap}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k-1} ; T\right)$ with equality if $\boldsymbol{A}_{k-1} \subseteq \boldsymbol{A}_{k}$

- Axiom 3 also defines a partial order $\preccurlyeq n$ over the remaining combinations
- For $n=2$, we have $\boldsymbol{A}_{1}=S_{1}, \boldsymbol{A}_{2}=S_{2}$ and $\boldsymbol{A}_{3}=\left(S_{1}, S_{2}\right)$
- By Axiom 3, $I_{\cap}\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2} ; T\right) \leq I_{\cap}\left(\boldsymbol{A}_{1} ; T\right)$

Williams and Beer axioms

1 Symmetry: $I_{\cap}\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k} ; T\right)$ is invariant under permutations of the \boldsymbol{A}_{i} 's
2 Self-redundancy: $I_{\cap}\left(\boldsymbol{A}_{i}: T\right)=I\left(\boldsymbol{A}_{i} ; T\right)$
3 Monotonicity: $I_{\cap}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k} ; T\right) \leq I_{\cap}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k-1} ; T\right)$ with equality if $\boldsymbol{A}_{k-1} \subseteq \boldsymbol{A}_{k}$

- Axiom 3 also defines a partial order $\preccurlyeq n$ over the remaining combinations
- For $n=2$, we have $\boldsymbol{A}_{1}=S_{1}, \boldsymbol{A}_{2}=S_{2}$ and $\boldsymbol{A}_{3}=\left(S_{1}, S_{2}\right)$
- By Axiom 3, $I_{\cap}\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2} ; T\right) \leq I_{\cap}\left(\boldsymbol{A}_{1} ; T\right)$
- Similarly, $I_{\cap}\left(\boldsymbol{A}_{1} ; T\right)=I_{\cap}\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{3} ; T\right) \leq I_{\cap}\left(\boldsymbol{A}_{3} ; T\right)$ since $\boldsymbol{A}_{1} \subseteq \boldsymbol{A}_{3}$

Williams and Beer axioms

1 Symmetry: $I_{\cap}\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k} ; T\right)$ is invariant under permutations of the \boldsymbol{A}_{i} 's
2 Self-redundancy: $I_{\cap}\left(\boldsymbol{A}_{i}: T\right)=I\left(\boldsymbol{A}_{i} ; T\right)$
3 Monotonicity: $I_{\cap}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k} ; T\right) \leq I_{\cap}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k-1} ; T\right)$ with equality if $\boldsymbol{A}_{k-1} \subseteq \boldsymbol{A}_{k}$

- Axiom 3 also defines a partial order $\preccurlyeq n$ over the remaining combinations
- For $n=2$, we have $\boldsymbol{A}_{1}=S_{1}, \boldsymbol{A}_{2}=S_{2}$ and $\boldsymbol{A}_{3}=\left(S_{1}, S_{2}\right)$
- By Axiom 3, $I_{\cap}\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2} ; T\right) \leq I_{\cap}\left(\boldsymbol{A}_{1} ; T\right)$
- Similarly, $I_{\cap}\left(\boldsymbol{A}_{1} ; T\right)=I_{\cap}\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{3} ; T\right) \leq I_{\cap}\left(\boldsymbol{A}_{3} ; T\right)$ since $\boldsymbol{A}_{1} \subseteq \boldsymbol{A}_{3}$
- Applying $\preccurlyeq n$ to all of the combinations of sources yields a lattice structure

Redundancy lattice

Partial information decomposition (PID)

Proposed measures

■ Still need to actually define a measure of redundant information

■ Still need to actually define a measure of redundant information
■ Providing this definition has been a contentious area of research

- Williams and Beer (2010) $I_{\text {min }}$.
- Harder et al. (2013) $I_{\text {red }}$.
- Bertschinger et al. (2014) $\widetilde{U I}$, or equivalently Griffith and Koch (2014) S_{Vk}.
- Barrett (2015) $I_{\text {Ммі }}$.
- Finn and Lizier (2018a) $r^{ \pm}$.
- ...

Union information decomposition

■ Williams and Beer focused on defining the redundancy I_{\cap} between sources
■ Can we instead quantify the union information I_{\cup} provided by sources?

Union information decomposition

■ Williams and Beer focused on defining the redundancy I_{\cap} between sources
■ Can we instead quantify the union information I_{\cup} provided by sources?

Union information decomposition

■ Williams and Beer focused on defining the redundancy I_{\cap} between sources
■ Can we instead quantify the union information I_{\cup} provided by sources?

■ Let \boldsymbol{A}_{i} represent a distinct way sources can provide information T

- For $n=2$, we have $\boldsymbol{A}_{1}=S_{1}, \boldsymbol{A}_{2}=S_{2}$ and $\boldsymbol{A}_{3}=\left(S_{1}, S_{2}\right)$

Union information

Union information axioms

1 Symmetry: $I_{\cup}\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k} ; T\right)$ is invariant under permutations of the \boldsymbol{A}_{i} 's
2 Self-information: $I_{\cup}\left(\boldsymbol{A}_{i}: T\right)=I\left(\boldsymbol{A}_{i} ; T\right)$
3 Monotonicity: $I_{\cup}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k} ; T\right) \geq I_{\cup}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k-1} ; T\right)$ with equality if $\boldsymbol{A}_{k-1} \supseteq \boldsymbol{A}_{k}$

Union information

Union information axioms

1 Symmetry: $I_{\cup}\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k} ; T\right)$ is invariant under permutations of the \boldsymbol{A}_{i} 's
2 Self-information: $I_{\cup}\left(\boldsymbol{A}_{i}: T\right)=I\left(\boldsymbol{A}_{i} ; T\right)$
3 Monotonicity: $I_{\cup}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k} ; T\right) \geq I_{\cup}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k-1} ; T\right)$ with equality if $\boldsymbol{A}_{k-1} \supseteq \boldsymbol{A}_{k}$

■ I_{\cup} can be applied to any combination of $\boldsymbol{A}_{i}{ }^{\prime}$'s, but many are equivalent

- For $n=2$, we have $\boldsymbol{A}_{1}=S_{1}, \boldsymbol{A}_{2}=S_{2}$ and $\boldsymbol{A}_{3}=\left(S_{1}, S_{2}\right)$
- But by Axiom 3, $I_{\cup}\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{3} ; T\right)=I_{\cup}\left(\boldsymbol{A}_{3} ; T\right)$ since $\boldsymbol{A}_{3} \supseteq \boldsymbol{A}_{1}$

Union information

Union information axioms

1 Symmetry: $I_{\cup}\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k} ; T\right)$ is invariant under permutations of the \boldsymbol{A}_{i} 's
2 Self-information: $I_{\cup}\left(\boldsymbol{A}_{i}: T\right)=I\left(\boldsymbol{A}_{i} ; T\right)$
3 Monotonicity: $I_{\cup}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k} ; T\right) \geq I_{\cup}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k-1} ; T\right)$ with equality if $\boldsymbol{A}_{k-1} \supseteq \boldsymbol{A}_{k}$

■ I_{\cup} can be applied to any combination of $\boldsymbol{A}_{i}{ }^{\prime}$'s, but many are equivalent

- For $n=2$, we have $\boldsymbol{A}_{1}=S_{1}, \boldsymbol{A}_{2}=S_{2}$ and $\boldsymbol{A}_{3}=\left(S_{1}, S_{2}\right)$
- But by Axiom 3, $I_{\cup}\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{3} ; T\right)=I_{\cup}\left(\boldsymbol{A}_{3} ; T\right)$ since $\boldsymbol{A}_{3} \supseteq \boldsymbol{A}_{1}$
- Left with all combinations of sources \boldsymbol{A}_{i} s.t. no source is a superset of any other
- For $n=2$, we have

$$
I_{\cup}\left(\boldsymbol{A}_{1} ; T\right), \quad I_{\cup}\left(\boldsymbol{A}_{2} ; T\right), \quad I_{\cup}\left(\boldsymbol{A}_{3} ; T\right) \quad \text { and } \quad I_{\cup}\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2} ; T\right)
$$

- The remaining combinations of sources are the same as for the redundancy

Union information

Union information axioms

1 Symmetry: $I_{\cup}\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k} ; T\right)$ is invariant under permutations of the \boldsymbol{A}_{i} 's
2 Self-information: $I_{\cup}\left(\boldsymbol{A}_{i}: T\right)=I\left(\boldsymbol{A}_{i} ; T\right)$
3 Monotonicity: $I_{\cup}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k} ; T\right) \geq I_{\cup}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k-1} ; T\right)$ with equality if $\boldsymbol{A}_{k-1} \supseteq \boldsymbol{A}_{k}$

- Axiom 3 also defines a partial order $\preccurlyeq \cup$ over the remaining combinations
- For $n=2$, we have $\boldsymbol{A}_{1}=S_{1}, \boldsymbol{A}_{2}=S_{2}$ and $\boldsymbol{A}_{3}=\left(S_{1}, S_{2}\right)$
- By Axiom 3, $I_{\cup}\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2} ; T\right) \geq I_{\cup}\left(\boldsymbol{A}_{1} ; T\right)$
- Similarly, $I_{\cup}\left(\boldsymbol{A}_{3} ; T\right)=I_{\cup}\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \boldsymbol{A}_{3} ; T\right) \geq I_{\cup}\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2} ; T\right)$

Union information

Union information axioms

1 Symmetry: $I_{\cup}\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k} ; T\right)$ is invariant under permutations of the \boldsymbol{A}_{i} 's
2 Self-information: $I_{\cup}\left(\boldsymbol{A}_{i}: T\right)=I\left(\boldsymbol{A}_{i} ; T\right)$
3 Monotonicity: $I_{\cup}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k} ; T\right) \geq I_{\cup}\left(\boldsymbol{A}_{1} ; \ldots ; \boldsymbol{A}_{k-1} ; T\right)$ with equality if $\boldsymbol{A}_{k-1} \supseteq \boldsymbol{A}_{k}$

- Axiom 3 also defines a partial order $\preccurlyeq \cup$ over the remaining combinations
- For $n=2$, we have $\boldsymbol{A}_{1}=S_{1}, \boldsymbol{A}_{2}=S_{2}$ and $\boldsymbol{A}_{3}=\left(S_{1}, S_{2}\right)$
- By Axiom 3, $I_{\cup}\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2} ; T\right) \geq I_{\cup}\left(\boldsymbol{A}_{1} ; T\right)$
- Similarly, $I_{\cup}\left(\boldsymbol{A}_{3} ; T\right)=I_{\cup}\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \boldsymbol{A}_{3} ; T\right) \geq I_{\cup}\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2} ; T\right)$
- We have the same combinations of sources, but a different partial order

■ Applying $\preccurlyeq \cup$ to all of the combinations of sources yields a lattice structure

Union information lattice

- Redundancy I_{\cap} and union information I_{\cup} are dual concepts

■ Union information order $\preccurlyeq \cup$ aligns well with higher-order interactions

Interaction hierarchy

- Redundancy I_{\cap} and union information I_{\cup} are dual concepts

■ Union information order $\preccurlyeq \cup$ aligns well with higher-order interactions
■ Seems natural to demand a consistency between the approaches

$$
I_{\cup}\left(S_{1}, S_{2} ; T\right)=I\left(S_{1} ; T\right)+I\left(S_{2} ; T\right)-I_{\cap}\left(S_{1}, S_{2} ; T\right)
$$

■ Kolchinsky (2022) argues that we should not make this demand

Inclusion-exclusion principle

■ Many approaches to PID already have an implicit measure of union information

■ Many approaches to PID already have an implicit measure of union information

- Williams and Beer (2010) $I_{\text {min }}$, Barrett (2015) $I_{\text {MMI }}$, Finn and Lizier (2018a) $r^{ \pm}$

$$
\begin{aligned}
I_{\cap} & =I_{\mathrm{MMI}}\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right)=\min \left(I\left(\boldsymbol{A}_{1} ; T\right), \ldots, I\left(\boldsymbol{A}_{k} ; T\right)\right) \\
\Longrightarrow I_{\cup} & =I_{\mathrm{MaxMI}}=\max \left(I\left(\boldsymbol{A}_{1} ; T\right), \ldots, I\left(\boldsymbol{A}_{k} ; T\right)\right)
\end{aligned}
$$

■ Many approaches to PID already have an implicit measure of union information

- Williams and Beer (2010) $I_{\text {min }}$, Barrett (2015) $I_{\text {MMI }}$, Finn and Lizier (2018a) $r^{ \pm}$

$$
\begin{aligned}
I_{\cap} & =I_{\mathrm{MMI}}\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{k}\right)=\min \left(I\left(\boldsymbol{A}_{1} ; T\right), \ldots, I\left(\boldsymbol{A}_{k} ; T\right)\right) \\
\Longrightarrow I_{\cup} & =I_{\mathrm{MaxMI}}=\max \left(I\left(\boldsymbol{A}_{1} ; T\right), \ldots, I\left(\boldsymbol{A}_{k} ; T\right)\right)
\end{aligned}
$$

- Bertschinger et al. (2014) $\widetilde{U I}$, Griffith and Koch (2014) S_{VK}

$$
\begin{aligned}
I_{\cap} & =\widetilde{S I}\left(S_{1}, S_{2} ; T\right)=\max _{Q \in \Delta P} I_{Q}\left(S_{1} ; S_{2} ; T\right) \\
\Longrightarrow I_{\cup} & =\widetilde{U n I}\left(S_{1}, S_{2} ; T\right)=\min _{Q \in \Delta P} I_{Q}\left(\left(S_{1} ; S_{2}\right) ; T\right)
\end{aligned}
$$

Bounds on the bivariate union information

- Similar to I_{\cap}, the union information I_{\cup} increases monotonically on the lattice
- In the bivariate case, we have that

$$
I\left(\left(S_{1}, S_{2}\right) ; T\right) \geq I_{\cup}\left(S_{1}, S_{2} ; T\right) \geq I\left(S_{1} ; T\right), I\left(S_{2} ; T\right) \geq 0
$$

Bounds on the bivariate union information

- Similar to I_{\cap}, the union information I_{\cup} increases monotonically on the lattice
- In the bivariate case, we have that

$$
I\left(\left(S_{1}, S_{2}\right) ; T\right) \geq I_{\cup}\left(S_{1}, S_{2} ; T\right) \geq I\left(S_{1} ; T\right), I\left(S_{2} ; T\right) \geq 0
$$

- Assuming that $I_{\cup}\left(S_{1}, S_{2} ; T\right)$ depends only on $P\left(S_{1}, T\right)$ and $P\left(S_{2}, T\right)$

$$
\widetilde{U n I}\left(S_{1}, S_{2} ; T\right) \geq I_{\cup}\left(S_{1}, S_{2} ; T\right) \geq I_{\mathrm{MaxMI}}
$$

Conclusion

Redundant information I_{\cap} is only one side of the information decomposition problem

We also need to consider the union information I_{\cup}

References

Adam B Barrett. Exploration of synergistic and redundant information sharing in static and dynamical gaussian systems. Physical Review E, 91(5):052802, 2015.
Nils Bertschinger, Johannes Rauh, Eckehard Olbrich, Jürgen Jost, and Nihat Ay. Quantifying unique information. Entropy, 16(4):2161-2183, 2014.

Conor Finn and Joseph T. Lizier. Pointwise partial information decomposition using the specificity and ambiguity lattices. Entropy, 20(4):297, 2018a.

Conor Finn and Joseph T. Lizier. Probability mass exclusions and the directed components of mutual information. Entropy, 20(11):826, 2018b.
Conor Finn and Joseph T Lizier. Generalised measures of multivariate information content. Entropy, 22(2):216, 2020.

Virgil Griffith and Christof Koch. Quantifying synergistic mutual information. In Guided Self-Organization: Inception, pages 159-190. Springer, 2014.
Malte Harder, Christoph Salge, and Daniel Polani. Bivariate measure of redundant information. Physical Review E, 87(1):012130, 2013.
Artemy Kolchinsky. A novel approach to the partial information decomposition. Entropy, 24(3):403, 2022.
Paul L Williams and Randall D Beer. Nonnegative decomposition of multivariate information. arXiv preprint arXiv:1004.2515, 2010.

DeMICS - Decomposing Multivariate Information in Complex Systems

June 5th-9th, 2023

Max Planck Institute for the Physics of Complex systems, Dresden, Germany

McGill generalised the MI by defining the multivariate mutual information,

$$
\begin{aligned}
I(X ; Y ; Z)=I(X ; Y)+I & (X ; Z) \\
& -I(X ;(Y, Z))
\end{aligned}
$$

McGill generalised the MI by defining the multivariate mutual information,

$$
\begin{aligned}
I(X ; Y ; Z)=I(X ; Y)+I & (X ; Z) \\
& -I(X ;(Y, Z))
\end{aligned}
$$

■ MMI is not non-negative.
■ Historically: "no intuitive meaning".

McGill generalised the MI by defining the multivariate mutual information,

$$
\begin{aligned}
I(X ; Y ; Z)=I(X ; Y)+I & (X ; Z) \\
& -I(X ;(Y, Z))
\end{aligned}
$$

■ MMI is not non-negative.
■ Historically: "no intuitive meaning".

