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Information theory

Represent each component using a random variable Xi

The entropy then quantifies our uncertainty about each component

H(Xi) = −
∑

xi∈Xi

p(xi) log p(xi) ≥ 0

The mutual information quantifies the dependence between components

I(X; Y ) = H(X) + H(Y ) − H(X, Y )

Advantages for complex systems:

– Captures both linear and non-linear dependencies
– Variables can represent very different quantities
– Model free
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Information theory and higher-order interactions
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Three ways to use the mutual information: I(S1; T ), I(S2; T ) and I
(
(S1, S2); T
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The problem

Shannon information theory is ill-equipped for analysing complex systems

Solution: information decomposition
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Information decomposition

Mutual information captures

I(S1; T ) = U1 + R1,2

I(S2; T ) = U2 + R1,2

Joint mutual information captures

I
(
(S1, S2); T

)
= U1 + U2 + R1,2 + C12

R1,2U1 U2

I(S2;T )I(S1;T )

C12
I(S1,S2;T )

Can we define one of the quantities to solve the system?
How do we generalise this idea to consider more variables?
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Partial information decomposition

Axiomatic framework for information decomposition (Williams and Beer, 2010)

Consider each way n source variables can provide information about T
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Let Ai represent a distinct way sources can provide information T

– For n = 2, we have A1 = S1, A2 = S2 and A3 = (S1, S2)

Define a function I∩ that quantifies the redundant information provided by the Ai’s
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Redundant information

Williams and Beer axioms
1 Symmetry: I∩(A1, . . . ,Ak; T ) is invariant under permutations of the Ai’s
2 Self-redundancy: I∩(Ai : T ) = I(Ai; T )
3 Monotonicity: I∩(A1; . . . ;Ak; T ) ≤ I∩(A1; . . . ;Ak−1; T ) with equality if

Ak−1 ⊆ Ak

I∩ can be applied to any combination of Ai’s, but many are equivalent

– For n = 2, we have A1 = S1, A2 = S2 and A3 = (S1, S2)
– But by Axiom 3, I∩(A1,A3; T ) = I∩(A1; T ) since A1 ⊆ A3

Left with all combinations of sources Ai s.t. no source is a subset of any other

– For n = 2, we have
I∩(A1; T ), I∩(A2; T ), I∩(A3; T ) and I∩(A1,A2; T )

The remaining combinations of sources are the antichains of the inclusion lattice
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1,21 2

12
I(S1,S2;T )

I(S2;T )I(S2;T )

123

23

1312

13,23 12,23

12,13

12,13,23

3 2

1

3,12 2,13

1,23

2,3

1,3 1,2

1,2,3

I(S1;T )

I(S2;T )I(S3;T )

I(S1,S2;T )I(S1,S3;T )

I(S2,S3;T )

I(S1,S2,S3;T )



Partial information decomposition (PID)

1,21 2

12
I(S1,S2;T )

I(S2;T )I(S2;T )

123

23

1312

13,23 12,23

12,13

12,13,23

3 2

1

3,12 2,13

1,23

2,3

1,3 1,2

1,2,3

I(S1;T )

I(S2;T )I(S3;T )

I(S1,S2;T )I(S1,S3;T )

I(S2,S3;T )

I(S1,S2,S3;T )



Proposed measures

Still need to actually define a measure of redundant information

Providing this definition has been a contentious area of research

– Williams and Beer (2010) Imin.
– Harder et al. (2013) Ired.
– Bertschinger et al. (2014) ŨI, or equivalently Griffith and Koch (2014) SVK.
– Barrett (2015) IMMI.
– Finn and Lizier (2018a) r±.
– ...
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Union information decomposition

Williams and Beer focused on defining the redundancy I∩ between sources
Can we instead quantify the union information I∪ provided by sources?
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– For n = 2, we have A1 = S1, A2 = S2 and A3 = (S1, S2)
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Union information axioms
1 Symmetry: I∪(A1, . . . ,Ak; T ) is invariant under permutations of the Ai’s
2 Self-information: I∪(Ai : T ) = I(Ai; T )
3 Monotonicity: I∪(A1; . . . ;Ak; T ) ≥ I∪(A1; . . . ;Ak−1; T ) with equality if

Ak−1 ⊇ Ak

I∪ can be applied to any combination of Ai’s, but many are equivalent

– For n = 2, we have A1 = S1, A2 = S2 and A3 = (S1, S2)
– But by Axiom 3, I∪(A1,A3; T ) = I∪(A3; T ) since A3 ⊇ A1

Left with all combinations of sources Ai s.t. no source is a superset of any other

– For n = 2, we have
I∪(A1; T ), I∪(A2; T ), I∪(A3; T ) and I∪(A1,A2; T )

The remaining combinations of sources are the same as for the redundancy
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Redundancy and union information

Redundancy I∩ and union information I∪ are dual concepts
Union information order ≼∪ aligns well with higher-order interactions
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Redundancy and union information

Redundancy I∩ and union information I∪ are dual concepts
Union information order ≼∪ aligns well with higher-order interactions
Seems natural to demand a consistency between the approaches

I∪(S1, S2; T ) = I(S1; T ) + I(S2; T ) − I∩(S1, S2; T )

Kolchinsky (2022) argues that we should not make this demand



Inclusion-exclusion principle

Many approaches to PID already have an implicit measure of union information

– Williams and Beer (2010) Imin, Barrett (2015) IMMI, Finn and Lizier (2018a) r±

I∩ = IMMI(A1, . . . ,Ak) = min
(
I(A1; T ), . . . , I(Ak; T )

)
=⇒ I∪ = IMaxMI = max

(
I(A1; T ), . . . , I(Ak; T )

)
– Bertschinger et al. (2014) ŨI, Griffith and Koch (2014) SVK

I∩ = S̃I(S1, S2; T ) = max
Q∈∆P

IQ(S1; S2; T )

=⇒ I∪ = ŨnI(S1, S2; T ) = min
Q∈∆P

IQ

(
(S1; S2); T

)
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Bounds on the bivariate union information

Similar to I∩, the union information I∪ increases monotonically on the lattice
In the bivariate case, we have that

I
(
(S1, S2); T

)
≥ I∪(S1, S2; T ) ≥ I(S1; T ), I(S2; T ) ≥ 0

12

1 ∪ 2

21

Ø

Assuming that I∪(S1, S2; T ) depends only on P (S1, T ) and P (S2, T )

ŨnI(S1, S2; T ) ≥ I∪(S1, S2; T ) ≥ IMaxMI
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Conclusion

Redundant information I∩ is only one side of the information decomposition problem

We also need to consider the union information I∪
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Multivariate mutual information

McGill generalised the MI by defining the
multivariate mutual information,

I(X; Y ; Z) = I(X; Y ) + I(X; Z)
− I

(
X; (Y, Z)

)

MMI is not non-negative.
Historically: “no intuitive meaning”.

I(X; Y ; Z)

H(X|Y, Z)

H(Y |X, Z) H(Z|X, Y )

I(X, Z|Y )I(X, Y |Z)

I(Y, Z|X)

H(Y ) H(Z)

H(X)H(X, Y, Z)
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